Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 7856, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798386

RESUMEN

Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes-especially climate change and elevated atmospheric carbon dioxide concentrations-are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.


Asunto(s)
Bosques , Nitrógeno/análisis , Madera/química , Clima , Humanos , Ciclo del Nitrógeno , Análisis Espacio-Temporal , Estados Unidos
2.
New Phytol ; 167(2): 493-508, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15998401

RESUMEN

Here, we tested hypothesized relationships among leaf and fine root traits of grass, forb, legume, and woody plant species of a savannah community. CO2 exchange rates, structural traits, chemistry, and longevity were measured in tissues of 39 species grown in long-term monocultures. Across species, respiration rates of leaves and fine roots exhibited a common regression relationship with tissue nitrogen (N) concentration, although legumes had lower rates at comparable N concentrations. Respiration rates and N concentration declined with increasing longevity of leaves and roots. Species rankings of leaf and fine-root N and longevity were correlated, but not specific leaf area and specific root length. The C3 and C4 grasses had lower N concentrations than forbs and legumes, but higher photosynthesis rates across a similar range of leaf N. Despite contrasting photosynthetic pathways and N2-fixing ability among these species, concordance in above- and below-ground traits was evident in comparable rankings in leaf and root longevity, N and respiration rates, which is evidence of a common leaf and root trait syndrome linking traits to effects on plant and ecosystem processes.


Asunto(s)
Plantas/anatomía & histología , Plantas/metabolismo , Poaceae/anatomía & histología , Poaceae/metabolismo , Dióxido de Carbono/metabolismo , Clima , Ecosistema , Fabaceae/anatomía & histología , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Nitrógeno/metabolismo , Desarrollo de la Planta , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Poaceae/crecimiento & desarrollo
3.
Oecologia ; 134(4): 471-8, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12647118

RESUMEN

Across 30 grassland sites in New Zealand that ranged from native alpine grasslands to low elevation improved pastures, there were consistent patterns of leaf and root traits and significant differences between native and non-native grasses. Plants of high altitude sites have low N concentrations in both their leaves and roots, have thick leaves and roots, yet no differences in tissue density or photosynthetic water use efficiency when compared to plants of low altitude sites. Both the leaves and roots of the low altitude plants were enriched in (15)N relative to the plants of higher altitude, indicating that the low-N set of traits is associated with a more closed N cycle at high altitude. A second independent set of correlations shows that plants of wetter habitats have lower photosynthetic water use efficiency (more negative partial differential (13)C) and lower leaf and root tissue density than the plants of drier sites. For both leaves and roots, plants of native species consistently had traits associated with lower resource availability: lower N concentrations, denser tissues, more negative partial differential (15)N, and more positive partial differential (13)C than non-native species. If root %N is correlated with root longevity as has been shown in other systems, root longevity may be able to be predicted from simple measurements of leaf %N, though a hysteresis in the relationship between leaf and root N concentrations may make prediction of high longevity roots difficult.


Asunto(s)
Adaptación Fisiológica , Altitud , Nitrógeno/análisis , Poaceae/fisiología , Nueva Zelanda , Nitrógeno/metabolismo , Hojas de la Planta/química , Raíces de Plantas/química , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA