Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Regen Med ; 132021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34027260

RESUMEN

INTRODUCTION: Macrophages are capable of extreme plasticity and their activation state has been strongly associated with solid tumor growth progression and regression. Although the macrophage response to extracellular matrix (ECM) isolated from normal tissue is reasonably well understood, there is a relative dearth of information regarding their response to ECM isolated from chronically inflamed tissues, pre-neoplastic tissues, and neoplastic tissues. Esophageal adenocarcinoma (EAC) is a type of neoplasia driven by chronic inflammation in the distal esophagus, and the length of the esophagus provides the opportunity to investigate macrophage behavior in the presence of ECM isolated from a range of disease states within the same organ. METHODS: Normal, metaplastic, and neoplastic ECM hydrogels were prepared from decellularized EAC tissue. The hydrogels were evaluated for their nanofibrous structure (SEM), biochemical profile (targeted and global proteomics), and direct effect upon macrophage (THP-1 cell) activation state (qPCR, ELISA, immunolabeling) and indirect effect upon epithelial cell (Het-1A) migration (Boyden chamber). RESULTS: Nanofibrous ECM hydrogels from the three tissue types could be formed, and normal and neoplastic ECM showed distinctive protein profiles by targeted and global mass spectroscopy. ECM proteins functionally related to cancer and tumorigenesis were identified in the neoplastic esophageal ECM including collagen alpha-1(VIII) chain (COL8A1), lumican, and elastin. Metaplastic and neoplastic esophageal ECM induce distinctive effects upon THP-1 macrophage signaling compared to normal esophageal ECM. These effects include activation of pro-inflammatory IFNγ and TNFα gene expression and anti-inflammatory IL1RN gene expression. Most notably, neoplastic ECM robustly increased macrophage TNFα protein expression. The secretome of macrophages pre-treated with metaplastic and neoplastic ECM increases the migration of normal esophageal epithelial cells, similar behavior to that shown by tumor cells. Metaplastic ECM shows similar but less pronounced effects than neoplastic ECM suggesting the abnormal signals also exist within the pre-cancerous state. CONCLUSION: A progressively diseased ECM, as exists within the esophagus exposed to chronic gastric reflux, can provide insights into novel biomarkers of early disease and identify potential therapeutic targets.

2.
Sci Adv ; 6(27): eaba4526, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32656339

RESUMEN

Chronic inflammatory gastric reflux alters the esophageal microenvironment and induces metaplastic transformation of the epithelium, a precancerous condition termed Barrett's esophagus (BE). The microenvironmental niche, which includes the extracellular matrix (ECM), substantially influences cell phenotype. ECM harvested from normal porcine esophageal mucosa (eECM) was formulated as a mucoadhesive hydrogel, and shown to largely retain basement membrane and matrix-cell adhesion proteins. Dogs with BE were treated orally with eECM hydrogel and omeprazole (n = 6) or omeprazole alone (n = 2) for 30 days. eECM treatment resolved esophagitis, reverted metaplasia to a normal, squamous epithelium in four of six animals, and downregulated the pro-inflammatory tumor necrosis factor-α+ cell infiltrate compared to control animals. The metaplastic tissue in control animals (n = 2) did not regress. The results suggest that in vivo alteration of the microenvironment with a site-appropriate, mucoadhesive ECM hydrogel can mitigate the inflammatory and metaplastic response in a dog model of BE.

3.
Sci Adv ; 6(12): eaay4361, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32219161

RESUMEN

Biomaterials composed of extracellular matrix (ECM) provide both mechanical support and a reservoir of constructive signaling molecules that promote functional tissue repair. Recently, matrix-bound nanovesicles (MBVs) have been reported as an integral component of ECM bioscaffolds. Although liquid-phase extracellular vesicles (EVs) have been the subject of intense investigation, their similarity to MBV is limited to size and shape. Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics and redox lipidomics were used to conduct a detailed comparison of liquid-phase EV and MBV phospholipids. Combined with comprehensive RNA sequencing and bioinformatic analysis of the intravesicular cargo, we show that MBVs are a distinct and unique subpopulation of EV and a distinguishing feature of ECM-based biomaterials. The results begin to identify the differential biologic activities mediated by EV that are secreted by tissue-resident cells and deposited within the ECM.


Asunto(s)
Vesículas Extracelulares , Lipidómica , Nanopartículas , Análisis de Secuencia de ARN , Células 3T3 , Animales , Materiales Biocompatibles , Cromatografía Liquida , Matriz Extracelular , Ácidos Grasos/metabolismo , Lipidómica/métodos , Microextracción en Fase Líquida , Ratones , Fosfolípidos/metabolismo , Fracciones Subcelulares
4.
Ann Biomed Eng ; 48(7): 2132-2153, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31741227

RESUMEN

Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.


Asunto(s)
Materiales Biocompatibles , Diferenciación Celular , Matriz Extracelular , Células Madre/citología , Andamios del Tejido , Animales , Humanos , Ingeniería de Tejidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-29276748

RESUMEN

Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.

6.
Semin Immunol ; 29: 2-13, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28736160

RESUMEN

Macrophage presence and phenotype are critical determinants of the healing response following injury. Downregulation of the pro-inflammatory macrophage phenotype has been associated with the therapeutic use of bioscaffolds composed of extracellular matrix (ECM), but phenotypic characterization of macrophages has typically been limited to small number of non-specific cell surface markers or expressed proteins. The present study determined the response of both primary murine bone marrow derived macrophages (BMDM) and a transformed human mononuclear cell line (THP-1 cells) to degradation products of two different, commonly used ECM bioscaffolds; urinary bladder matrix (UBM-ECM) and small intestinal submucosa (SIS-ECM). Quantified cell responses included gene expression, protein expression, commonly used cell surface markers, and functional assays. Results showed that the phenotype elicited by ECM exposure (MECM) is distinct from both the classically activated IFNγ+LPS phenotype and the alternatively activated IL-4 phenotype. Furthermore, the BMDM and THP-1 macrophages responded differently to identical stimuli, and UBM-ECM and SIS-ECM bioscaffolds induced similar, yet distinct phenotypic profiles. The results of this study not only characterized an MECM phenotype that has anti-inflammatory traits but also showed the risks and challenges of making conclusions about the role of macrophage mediated events without consideration of the source of macrophages and the limitations of individual cell markers.


Asunto(s)
Biomimética , Matriz Extracelular/metabolismo , Macrófagos/fisiología , Andamios del Tejido , Animales , Materiales Biocompatibles/metabolismo , Células de la Médula Ósea/fisiología , Diferenciación Celular , Matriz Extracelular/inmunología , Humanos , Mamíferos , Fenotipo , Cicatrización de Heridas
7.
Acta Biomater ; 49: 1-15, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27915024

RESUMEN

Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. STATEMENT OF SIGNIFICANCE: More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel.


Asunto(s)
Matriz Extracelular/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Animales , Humanos , Ensayo de Materiales
8.
Tissue Eng Part A ; 22(19-20): 1129-1139, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27562630

RESUMEN

Acellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood. Thirty-two C57bl/6 mice were divided into eight groups of four animals each. A critical-sized defect was created in the quadriceps muscle and was repaired with a small intestinal submucosa ECM bioscaffold or left untreated. Animals were sacrificed at 3, 7, 14, or 56 days after surgery. The spatiotemporal cellular response in both treated and untreated groups was characterized by immunolabeling methods. Early time points showed a robust M2-like macrophage phenotype following ECM treatment in contrast to the predominant M1-like macrophage phenotype present in the untreated group. ECM implantation promoted perivascular stem cell mobilization, increased presence of neurogenic progenitor cells, and was associated with myotube formation. These cell types were present not only at the periphery of the defect near uninjured muscle, but also in the center of the ECM-filled defect. ECM bioscaffolds modify the default response to skeletal muscle injury, and provide a microenvironment conducive to a constructive healing response.


Asunto(s)
Matriz Extracelular/química , Movilización de Célula Madre Hematopoyética , Inmunomodulación , Músculo Cuádriceps , Regeneración/inmunología , Células Madre/inmunología , Andamios del Tejido/química , Animales , Ratones , Músculo Cuádriceps/lesiones , Músculo Cuádriceps/fisiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...