Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 28(1): 79-95.e8, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33098807

RESUMEN

The derivation of tissue-specific stem cells from human induced pluripotent stem cells (iPSCs) would have broad reaching implications for regenerative medicine. Here, we report the directed differentiation of human iPSCs into airway basal cells ("iBCs"), a population resembling the stem cell of the airway epithelium. Using a dual fluorescent reporter system (NKX2-1GFP;TP63tdTomato), we track and purify these cells as they first emerge as developmentally immature NKX2-1GFP+ lung progenitors and subsequently augment a TP63 program during proximal airway epithelial patterning. In response to primary basal cell medium, NKX2-1GFP+/TP63tdTomato+ cells display the molecular and functional phenotype of airway basal cells, including the capacity to self-renew or undergo multi-lineage differentiation in vitro and in tracheal xenografts in vivo. iBCs and their differentiated progeny model perturbations that characterize acquired and genetic airway diseases, including the mucus metaplasia of asthma, chloride channel dysfunction of cystic fibrosis, and ciliary defects of primary ciliary dyskinesia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Células Epiteliales , Humanos , Pulmón , Tráquea
2.
Mol Ther ; 28(7): 1684-1695, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32402246

RESUMEN

There is a strong rationale to consider future cell therapeutic approaches for cystic fibrosis (CF) in which autologous proximal airway basal stem cells, corrected for CFTR mutations, are transplanted into the patient's lungs. We assessed the possibility of editing the CFTR locus in these cells using zinc-finger nucleases and have pursued two approaches. The first, mutation-specific correction, is a footprint-free method replacing the CFTR mutation with corrected sequences. We have applied this approach for correction of ΔF508, demonstrating restoration of mature CFTR protein and function in air-liquid interface cultures established from bulk edited basal cells. The second is targeting integration of a partial CFTR cDNA within an intron of the endogenous CFTR gene, providing correction for all CFTR mutations downstream of the integration and exploiting the native CFTR promoter and chromatin architecture for physiologically relevant expression. Without selection, we observed highly efficient, site-specific targeted integration in basal cells carrying various CFTR mutations and demonstrated restored CFTR function at therapeutically relevant levels. Significantly, Omni-ATAC-seq analysis revealed minimal impact on the positions of open chromatin within the native CFTR locus. These results demonstrate efficient functional correction of CFTR and provide a platform for further ex vivo and in vivo editing.


Asunto(s)
Bronquios/citología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Células Epiteliales/trasplante , Edición Génica/métodos , Bronquios/metabolismo , Bronquios/trasplante , Diferenciación Celular , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Mutación , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
3.
J Clin Invest ; 127(6): 2277-2294, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463226

RESUMEN

It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Separación Celular , Células Cultivadas , Citometría de Flujo , Regulación Enzimológica de la Expresión Génica , Humanos , Ratones , Factor Nuclear Tiroideo 1 , Transcriptoma
4.
Mol Ther Nucleic Acids ; 5(10): e372, 2016 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727248

RESUMEN

Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb, helper-dependent adenoviral vectors with long homology arms are used for gene editing. However, this makes vector construction and recombinant analysis difficult. Conversely, insufficient homology may compromise targeting efficiency. Thus, we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology, the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration, and 97.4-100% after negative selection against random integrations. With 14.8 kb, the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb, the frequencies were 21.4 and 75% after positive and negative selection, respectively. With only 5.6 kb, the frequencies were 5.6-16.7% after positive selection and 50% after negative selection, but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore, we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However, low frequencies (≤ 1 × 10-3) necessitated negative selection for piggyBac-excision product isolation.

5.
Stem Cell Reports ; 7(2): 139-48, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27396937

RESUMEN

Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined. Whereas differentiation to non-lymphoid lineages was readily obtained from WAS-iPSCs, in vitro T lymphopoiesis from WAS-iPSC was deficient with few CD4(+)CD8(+) double-positive and mature CD3(+) T cells obtained. T cell differentiation was restored for cWAS-iPSCs. Similarly, defects in natural killer cell differentiation and function were restored on targeted correction of the WAS locus. These results demonstrate that the defects exhibited by WAS-iPSC-derived lymphoid cells were fully corrected and suggests the potential therapeutic use of gene-corrected WAS-iPSCs.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas/patología , Linfopoyesis , Síndrome de Wiskott-Aldrich/patología , Síndrome de Wiskott-Aldrich/terapia , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Células Asesinas Naturales/metabolismo , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética
6.
Stem Cell Reports ; 5(6): 1053-1066, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26549847

RESUMEN

Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Células Eritroides/citología , Células Madre Pluripotentes Inducidas/metabolismo , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Alelos , Secuencia de Bases , Recuento de Células , ADN Complementario/genética , Células Eritroides/metabolismo , Marcación de Gen , Terapia Genética , Humanos , Leucocitos Mononucleares/metabolismo , Recombinación Genética
7.
Stem Cell Reports ; 4(4): 569-77, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25772471

RESUMEN

Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources-potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines. We then utilized zinc-finger nucleases (ZFNs), designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Marcación de Gen , Células Madre Pluripotentes Inducidas/metabolismo , Alelos , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Endonucleasas/genética , Endonucleasas/metabolismo , Expresión Génica , Marcación de Gen/métodos , Vectores Genéticos/genética , Genotipo , Recombinación Homóloga , Humanos , Células Madre Pluripotentes Inducidas/citología , Mutación , Reparación del ADN por Recombinación , Análisis de Secuencia de ADN , Dedos de Zinc/genética
8.
Cell Stem Cell ; 2(6): 595-601, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18522852

RESUMEN

Embryonic stem cells (ESCs) are capable of indefinite self-renewal while retaining the ability to differentiate to any of the three germ layers that give rise to all somatic cell types. An emerging view is that a core set of transcription factors, including Oct4, Sox2, and Nanog, form a robust autoregulatory circuit that maintains ESCs in a self-renewing state. To accommodate the capacity of such cells to undergo germ layer-specific differentiation, we predicted a posttranslational mechanism that could negatively regulate these core self-renewal factors. Here we report caspase-induced cleavage of Nanog in differentiating ESCs. Stem cells lacking the Casp3 gene showed marked defects in differentiation, while forced expression of a caspase cleavage-resistant Nanog mutant in ESCs strongly promoted self-renewal. These results link a major component of the programmed cell-death pathway to the regulation of ESC development.


Asunto(s)
Caspasa 3/genética , Caspasa 3/metabolismo , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Proteína Homeótica Nanog , Activación Transcripcional , Transfección , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...