Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 79: 27-37, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392984

RESUMEN

Cyanobacteria are promising as a biotechnological platform for production of various industrially relevant compounds, including aromatic amino acids and their derivatives, phenylpropanoids. In this study, we have generated phenylalanine resistant mutant strains (PRMs) of the unicellular cyanobacterium Synechocystis sp. PCC 6803, by laboratory evolution under the selective pressure of phenylalanine, which inhibits the growth of wild type Synechocystis. The new strains of Synechocystis were tested for their ability to secrete phenylalanine in the growth medium during cultivation in shake flasks as well as in a high-density cultivation (HDC) system. All PRM strains secreted phenylalanine into the culture medium, with one of the mutants, PRM8, demonstrating the highest specific production of 24.9 ± 7 mg L-1·OD750-1 or 610 ± 196 mg L-1 phenylalanine after four days of growth in HDC. We further overexpressed phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) in the mutant strains in order to determine the potential of PRMs for production of trans-cinnamic acid (tCA) and para-coumaric acid (pCou), the first intermediates of the plant phenylpropanoid pathway. Productivities of these compounds were found to be lower in the PRMs compared to respective control strains, except for PRM8 under HDC conditions. The PRM8 background strain in combination with PAL or TAL expression demonstrated a specific production of 52.7 ± 15 mg L-1·OD750-1tCA and 47.1 ± 7 mg L-1·OD750-1pCou, respectively, with a volumetric titer reaching above 1 g L-1 for both products after four days of HDC cultivation. The genomes of PRMs were sequenced in order to identify which mutations caused the phenotype. Interestingly, all of the PRMs contained at least one mutation in their ccmA gene, which encodes DAHP synthase, the first enzyme of the pathway for aromatic amino acids biosynthesis. Altogether, we demonstrate that the combination of laboratory-evolved mutants and targeted metabolic engineering can be a powerful tool in cyanobacterial strain development.


Asunto(s)
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Ácidos Cumáricos , Fenilalanina/genética , Fenilalanina/metabolismo
2.
Metab Eng ; 73: 256-269, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35987434

RESUMEN

The chemolithotroph Cupriavidus necator H16 is known as a natural producer of the bioplastic-polymer PHB, as well as for its metabolic versatility to utilize different substrates, including formate as the sole carbon and energy source. Depending on the entry point of the substrate, this versatility requires adjustment of the thermodynamic landscape to maintain sufficiently high driving forces for biological processes. Here we employed a model of the core metabolism of C. necator H16 to analyze the thermodynamic driving forces and PHB yields from formate for different metabolic engineering strategies. For this, we enumerated elementary flux modes (EFMs) of the network and evaluated their PHB yields as well as thermodynamics via Max-min driving force (MDF) analysis and random sampling of driving forces. A heterologous ATP:citrate lyase reaction was predicted to increase driving force for producing acetyl-CoA. A heterologous phosphoketolase reaction was predicted to increase maximal PHB yields as well as driving forces. These enzymes were then verified experimentally to enhance PHB titers between 60 and 300% in select conditions. The EFM analysis also revealed that PHB production from formate may be limited by low driving forces through citrate lyase and aconitase, as well as cofactor balancing, and identified additional reactions associated with low and high PHB yield. Proteomics analysis of the engineered strains confirmed an increased abundance of aconitase and cofactor balancing. The findings of this study aid in understanding metabolic adaptation. Furthermore, the outlined approach will be useful in designing metabolic engineering strategies in other non-model bacteria.


Asunto(s)
Cupriavidus necator , Aconitato Hidratasa/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Formiatos/metabolismo , Fructosa/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Termodinámica
3.
Mol Plant Microbe Interact ; 34(12): 1390-1398, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34875178

RESUMEN

An Azorhizobium caulinodans phaC mutant (OPS0865) unable to make poly-3-hydroxybutyrate (PHB), grows poorly on many carbon sources and cannot fix nitrogen in laboratory culture. However, when inoculated onto its host plant, Sesbania rostrata, the phaC mutant consistently fixed nitrogen. Upon reisolation from S. rostrata root nodules, a suppressor strain (OPS0921) was isolated that has significantly improved growth on a variety of carbon sources and also fixes nitrogen in laboratory culture. The suppressor retains the original mutation and is unable to synthesize PHB. Genome sequencing revealed a suppressor transition mutation, G to A (position 357,354), 13 bases upstream of the ATG start codon of phaR in its putative ribosome binding site (RBS). PhaR is the global regulator of PHB synthesis but also has other roles in regulation within the cell. In comparison with the wild type, translation from the phaR native RBS is increased approximately sixfold in the phaC mutant background, suggesting that the level of PhaR is controlled by PHB. Translation from the phaR mutated RBS (RBS*) of the suppressor mutant strain (OPS0921) is locked at a low basal rate and unaffected by the phaC mutation, suggesting that RBS* renders the level of PhaR insensitive to regulation by PHB. In the original phaC mutant (OPS0865), the lack of nitrogen fixation and poor growth on many carbon sources is likely to be due to increased levels of PhaR causing dysregulation of its complex regulon, because PHB formation, per se, is not required for effective nitrogen fixation in A. caulinodans.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Azorhizobium caulinodans , Proteínas Bacterianas/metabolismo , Hidroxibutiratos , Fijación del Nitrógeno , Poliésteres , Simbiosis
4.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723797

RESUMEN

Bacteria must balance the different needs for substrate assimilation, growth functions, and resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial proteome is by far the most important resource and its size is limited. Here, we investigated how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein resources when grown on different limiting substrates and with different growth rates. We determined protein quantity by mass spectrometry and estimated enzyme utilization by resource balance analysis modeling. We found that C. necator invests a large fraction of its proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are present in excess abundance. One prominent example is the strong expression of CBB cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.


Asunto(s)
Cupriavidus necator/crecimiento & desarrollo , Cupriavidus necator/metabolismo , Proteoma/metabolismo , Procesos Autotróficos , Proteínas Bacterianas/biosíntesis , Dióxido de Carbono/metabolismo , Cupriavidus necator/enzimología , Procesos Heterotróficos , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
5.
Sci Adv ; 7(31)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34330708

RESUMEN

Rhizobia induce nodule formation on legume roots and differentiate into bacteroids, which catabolize plant-derived dicarboxylates to reduce atmospheric N2 into ammonia. Despite the agricultural importance of this symbiosis, the mechanisms that govern carbon and nitrogen allocation in bacteroids and promote ammonia secretion to the plant are largely unknown. Using a metabolic model derived from genome-scale datasets, we show that carbon polymer synthesis and alanine secretion by bacteroids facilitate redox balance in microaerobic nodules. Catabolism of dicarboxylates induces not only a higher oxygen demand but also a higher NADH/NAD+ ratio than sugars. Modeling and 13C metabolic flux analysis indicate that oxygen limitation restricts the decarboxylating arm of the tricarboxylic acid cycle, which limits ammonia assimilation into glutamate. By tightly controlling oxygen supply and providing dicarboxylates as the energy and electron source donors for N2 fixation, legumes promote ammonia secretion by bacteroids. This is a defining feature of rhizobium-legume symbioses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...