Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 257: 112610, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38761580

RESUMEN

Drug resistance has been a major problem for cancer chemotherapy, especially for glioblastoma multiforme that is aggressive, heterogeneous and recurrent with <3% of a five-year survival and limited methods of clinical treatment. To overcome the problem, great efforts have recently been put in searching for agents inducing death of tumor cells via various non-apoptotic pathways. In the present work, we report for the first time that vanadyl complexes, i.e. bis(acetylacetonato)oxidovanadium (IV) (VO(acac)2), can cause mitotic catastrophe and methuotic death featured by catastrophic macropinocytic vacuole accumulation particularly in glioblastoma cells (GCs). Hence, VO(acac)2 strongly suppressed growth of GCs with both in vitro (IC50 = 4-6 µM) and in vivo models, and is much more potent than the current standard-of-care drug Temozolomide. The selective index is as high as ∼10 or more on GCs over normal neural cells. Importantly, GCs respond well to vanadium treatment regardless whether they are carrying IDH1 wild type gene that causes drug resistance. VO(acac)2 may induce methuosis via the Rac-Mitogen-activated protein kinase kinase 4 (MKK4)-c-Jun N-terminal kinase (JNK) signaling pathway. Furthermore, VO(acac)2-induced methuosis is not through a immunogenicity mechanism, making vanadyl complexes safe for interventional therapy. Overall, our results may encourage development of novel vanadium complexes promising for treatment of neural malignant tumor cells.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38539861

RESUMEN

Noise-induced hearing loss (NIHL) is a prevalent form of adult hearing impairment, characterized by oxidative damage to auditory sensory hair cells. Although certain dihydropyridines, the L-type calcium channel blockers, exhibit protective properties against such damage, the ability of third-generation dihydropryidines like lercanidipine to mitigate NIHL remains unclear.We utilized glucose oxidase (GO)-treated OC1 cell lines and cochlear explants to evaluate the protective influence of lercanidipine on hair cells. To further investigate its effectiveness, we exposed noise-stimulated mice in vivo and analyzed their hearing thresholds. Additionally, we assessed the antioxidative capabilities of lercanidipine by examining oxidation-related enzyme expression and levels of oxidative stress markers, including 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE). Our findings demonstrate that lercanidipine significantly reduces the adverse impacts of GO on both OC-1 cell viability (0.3 to 2.5 µM) and outer hair cell (OHC) survival in basal turn cochlear explants (7 µM). These results are associated with increased mRNA expression of antioxidant enzyme genes (HO-1, SOD1/2, and Txnrd1), along with decreased expression of oxidase genes (COX-2, iNOS). Crucially, lercanidipine administration prior to, and following, noise exposure effectively ameliorates NIHL, as evidenced by lowered hearing thresholds and preserved OHC populations in the basal turn, 14 days post-noise stimulation at 110 dB SPL. Moreover, our observations indicate that lercanidipine's antioxidative action persists even three days after simultaneous drug and noise treatments, based on 3-nitrotyrosine and 4-hydroxynonenal immunostaining in the basal turn. Based on these findings, we propose that lercanidipine has the capacity to alleviate NIHL and safeguard OHC survival in the basal turn, potentially via its antioxidative mechanism. These results suggest that lercanidipine holds promise as a clinically viable option for preventing NIHL in affected individuals.

3.
Int J Mol Med ; 53(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38391090

RESUMEN

The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.


Asunto(s)
Disfunción Cognitiva , Enfermedades Vestibulares , Humanos , Cognición/fisiología , Disfunción Cognitiva/etiología , Calidad de Vida , Memoria Espacial/fisiología , Enfermedades Vestibulares/psicología
4.
Front Mol Biosci ; 11: 1350699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414662

RESUMEN

Pyrazinoic acid is the active form of pyrazinamide, a first-line antibiotic used to treat Mycobacterium tuberculosis infections. However, the mechanism of action of pyrazinoic acid remains a subject of debate, and alternatives to pyrazinamide in cases of resistance are not available. The work presented here demonstrates that pyrazinoic acid and known protonophores including salicylic acid, benzoic acid, and carbonyl cyanide m-chlorophenyl hydrazone all exhibit pH-dependent inhibition of mycobacterial growth activity over a physiologically relevant range of pH values. Other anti-tubercular drugs, including rifampin, isoniazid, bedaquiline, and p-aminosalicylic acid, do not exhibit similar pH-dependent growth-inhibitory activities. The growth inhibition curves of pyrazinoic, salicylic, benzoic, and picolinic acids, as well as carbonyl cyanide m-chlorophenyl hydrazone, all fit a quantitative structure-activity relationship (QSAR) derived from acid-base equilibria with R2 values > 0.95. The QSAR model indicates that growth inhibition relies solely on the concentration of the protonated forms of these weak acids (rather than the deprotonated forms). Moreover, pyrazinoic acid, salicylic acid, and carbonyl cyanide m-chlorophenyl hydrazone all caused acidification of the mycobacterial cytoplasm at concentrations that inhibit bacterial growth. Thus, it is concluded that pyrazinoic acid acts as an uncoupler of oxidative phosphorylation and that disruption of proton motive force is the primary mechanism of action of pyrazinoic acid rather than the inhibition of a classic enzyme activity.

6.
Inorg Chem ; 62(43): 17804-17817, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37858311

RESUMEN

Limited stability of most transition-metal complexes in biological media has hampered their medicinal applications but also created a potential for novel cancer treatments, such as intratumoral injections of cytotoxic but short-lived anticancer drugs. Two related V(V) complexes, [VO(Hshed)(dtb)] (1) and [VO(Hshed)(cat)] (2), where H2shed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, H2dtb = 3,5-di-tert-butylcatechol, and H2cat = 1,2-catechol, decomposed within minutes in cell culture medium at 310 K (t1/2 = 43 and 9 s for 1 and 2, respectively). Despite this, both complexes showed high antiproliferative activities in triple-negative human breast cancer (MDA-MB-231) cells, but the mechanisms of their activities were radically different. Complex 1 formed noncovalent adducts with human serum albumin, rapidly entered cells via passive diffusion, and was nearly as active in a short-term treatment (IC50 = 1.9 ± 0.2 µM at 30 min) compared with a long-term treatment (IC50 = 1.3 ± 0.2 µM at 72 h). The activity of 1 decreased about 20-fold after its decomposition in cell culture medium for 30 min at 310 K. Complex 2 showed similar activities (IC50 ≈ 12 µM at 72 h) in both fresh and decomposed solutions and was inactive in a short-term treatment. The activity of 2 was mainly due to the reactions among V(V) decomposition products, free catechol, and O2 in cell culture medium. As a result, the activity of 1 was less sensitive than that of 2 to the effects of hypoxic conditions that are characteristic of solid tumors and to the presence of apo-transferrin that acts as a scavenger of V(V/IV) decomposition products in blood serum. In summary, complex 1, but not 2, is a suitable candidate for further development as an anticancer drug delivered via intratumoral injections. These results demonstrate the importance of fine-tuning the ligand properties for the optimization of biological activities of metal complexes.


Asunto(s)
Complejos de Coordinación , Compuestos Organometálicos , Humanos , Complejos de Coordinación/farmacología , Vanadio/farmacología , Compuestos Organometálicos/farmacología , Transferrina , Albúminas , Hipoxia , Catecoles/farmacología
7.
Pathogens ; 12(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764979

RESUMEN

In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate (P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to glutamate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for the replication of pathogenic M. tuberculosis. Highly active enzymes were expressed and purified using a Mycobacterium smegmatis expression system. The purified enzymes were characterized using natural substrates and chemically synthesized analogs. The structural requirements of the quinone electron acceptor were examined. PruB displayed activity with all tested lipoquinone analogs (naphthoquinone or benzoquinone). In PruB assays utilizing analogs of the native naphthoquinone [MK-9 (II-H2)] specificity constants Kcat/Km were an order of magnitude greater for the menaquinone analogs than the benzoquinone analogs. In addition, mycobacterial PruA was enzymatically characterized for the first time using exogenous chemically synthesized P5C. A Km value of 120 ± 0.015 µM was determined for P5C, while the Km value for NAD+ was shown to be 33 ± 4.3 µM. Furthermore, proline competitively inhibited PruA activity and coupled enzyme assays, suggesting that the recombinant purified monofunctional PruB and PruA enzymes of M. tuberculosis channel substrate likely increase metabolic flux and protect the bacterium from methylglyoxal toxicity.

8.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37765040

RESUMEN

Polyoxovanadates (POV) are a subgroup of polyoxometalates (POM), which are nanosized clusters with reported biological activities. This manuscript describes the first toxicity evaluation of a mixed-valence polyoxovanadate, pentadecavanadate, (Me4N)6[V15O36Cl], abbreviated as V15. Cytotoxicity experiments using peripheral blood mononuclear cells (PBMC), larvae of Artemia salina Leach, and in vivo oral acute and repeated 28-day doses in mice was carried out. The LC50 values in PBMC cells and A. salina were 17.5 ± 5.8 µmol L-1, and 17.9 µg L-1, respectively, which indicates high cytotoxic activity. The toxicity in mice was not observed upon acute exposure in a single dose, however, the V15 repeated 28-day oral administration demonstrated high toxicity using 25 mg/kg, 50 mg/kg and, 300 mg/kg doses. The biochemical and hematological analyses during the 28-day administration of V15 showed significant alteration of the metabolic parameters related to the kidney and liver, suggesting moderate toxicity. The V15 toxicity was attributed to the oxidative stress and lipid peroxidation, once thiobarbituric acid (TBAR) levels significantly increased in both males and females treated with high doses of the POV and also in males treated with a lower dose of the POV. This is the first study reporting a treatment-related mortality in animals acutely administrated with a mixed-valence POV, contrasting with the well-known, less toxic decavanadate. These results document the toxicity of this mixed-valence POV, which may not be suitable for biomedical applications.

9.
Chemistry ; 29(68): e202302271, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37581946

RESUMEN

Two new series of complexes with pyridine-containing Schiff bases, [VV O(SALIEP)L] and [VV O(Cl-SALIEP)L] (SALIEP=N-(salicylideneaminato)-2-(2-aminoethylpyridine; Cl-SALIEP=N-(5-chlorosalicylideneaminato)-2-(2-aminoethyl)pyridine, L=catecholato(2-) ligand) have been synthesized. Characterization by 1 H and 51 V NMR and UV-Vis spectroscopies confirmed that: 1) most complexes form two major geometric isomers in solution, and [VV O(SALIEP)(DTB)] (DTB=3,5-di-tert-butylcatecholato(2-)) forms two isomers that equilibrate in solution; and 2) tert-butyl substituents were necessary to stabilize the reduced VIV species (EPR spectroscopy and cyclic voltammetry). The pyridine moiety within the Schiff base ligands significantly changed their chemical properties with unsubstituted catecholate ligands compared with the parent HSHED (N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine) Schiff base complexes. Immediate reduction to VIV occurred for the unsubstituted-catecholato VV complexes on dissolution in DMSO. By contrast, the pyridine moiety within the Schiff base significantly improved the hydrolytic stability of [VV O(SALIEP)(DTB)] compared with [VV O(HSHED)(DTB)]. [VV O(SALIEP)(DTB)] had moderate stability in cell culture media. There was significant cellular uptake of the intact complex by T98G (human glioblastoma) cells and very good anti-proliferative activity (IC50 6.7±0.9 µM, 72 h), which was approximately five times higher than for the non-cancerous human cell line, HFF-1 (IC50 34±10 µM). This made [VV O(SALIEP)(DTB)] a potential drug candidate for the treatment of advanced gliomas by intracranial injection.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Glioblastoma , Compuestos Organometálicos , Humanos , Vanadio/química , Bases de Schiff/química , Compuestos Organometálicos/química , Glioblastoma/tratamiento farmacológico , Antineoplásicos/química , Piridinas/química , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Ligandos , Complejos de Coordinación/farmacología
10.
Langmuir ; 39(22): 7811-7819, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219990

RESUMEN

Confining water to nanosized spaces creates a unique environment that can change water's structural and dynamic properties. When ions are present in these nanoscopic spaces, the limited number of water molecules and short screening length can dramatically affect how ions are distributed compared to the homogeneous distribution assumed in bulk aqueous solution. Here, we demonstrate that the chemical shift observed in 19F NMR spectroscopy of fluoride anion, F-, probes the location of sodium ions, Na+, confined in reverse micelles prepared from AOT (sodium dioctyl sulfosuccinate) surfactants. Our measurements show that the nanoconfined environment of reverse micelles can lead to extremely high apparent ion concentrations and ionic strength, beyond the limit in bulk aqueous solutions. Most notably, the 19F NMR chemical shift trends we observe for F- in the reverse micelles indicate that the AOT sodium counterions remain at or near the interior interface between surfactant and water, thus providing the first experimental support for this hypothesis.

11.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982458

RESUMEN

Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.


Asunto(s)
Sales (Química) , Vanadio , Humanos , Especies Reactivas de Oxígeno/farmacología , Peroxidación de Lípido , Vanadio/toxicidad , Sales (Química)/farmacología , Estrés Oxidativo
12.
Molecules ; 28(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838987

RESUMEN

A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.


Asunto(s)
Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Humanos , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Neoplasias/genética
13.
J Inorg Biochem ; 241: 112127, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822888

RESUMEN

This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes , Ratas , Animales , Hipoglucemiantes/farmacología , Glucemia , Ratas Wistar , Vanadio/química
14.
Inorg Chem ; 61(51): 20757-20773, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36519680

RESUMEN

A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 µM DTB, 34 ± 7 µM 3-MeCat, and 19 ± 2 µM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 µM DTB, 18 ± 3 µM 3-MeCat, and 8.1 ± 0.6 µM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.


Asunto(s)
Complejos de Coordinación , Vanadio , Humanos , Vanadio/farmacología , Vanadio/química , Cisplatino , Bases de Schiff/farmacología , Bases de Schiff/química , Agua , Espectroscopía de Resonancia Magnética , Complejos de Coordinación/farmacología , Ligandos
15.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361645

RESUMEN

Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.


Asunto(s)
Plastoquinona , Ubiquinona , Vitamina K 2 , Ubiquinona/metabolismo , Quinonas/metabolismo , Conformación Molecular , Agua
17.
J Inorg Biochem ; 237: 111984, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152468

RESUMEN

The antiproliferative effects of four series of VIVO- and VVO-based compounds containing 8-hydroxyquinoline ligands on the bacterium Mycolicibacterium smegmatis (M. smeg) were investigated. The effects on M. smeg were compared to the antiproliferative effects on the protozoan parasite Trypanosoma cruzi (T. cruzi), the causative agent for Chagas disease. In this study, we investigate the speciation of these compounds under physiological conditions as well as the antiproliferative effects on the bacterium M. smeg. We find that the complexes are more stable the less H2O is present, and that the stability increases in lipid-like environments. Only one heteroleptic complex and two homoleptic complexes were found to show similar antiproliferative effects on M. smeg as reported for T. cruzi so the responses generally observed by M.smeg. is less than observed by the pathogen. In summary, we find that M. smeg is more sensitive to the detailed structure of the V-complex but overall these complexes are less effective against M. smeg compared to T. cruzi.


Asunto(s)
Enfermedad de Chagas , Complejos de Coordinación , Trypanosoma cruzi , Humanos , Vanadio/química , Oxiquinolina/farmacología , Ligandos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
18.
Inorg Chem Front ; 9(7): 1556-1564, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35756945

RESUMEN

Decavanadate (V10O28 6- or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared by other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V10O26 2- anion was displayed in the negative-ion ESI mass spectra. None of the V10O26 cations were detected in ESI MS, and only a low-abundance signal was observed for V10O26 anions with a single negative charge, indicating that the presence of abundant V10O26 2- anions in ESI MS reflects gas-phase instability of V10O28 anions carrying two charges. The gas-phase origin of the V10O26 2- anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H4V10O28 2-), resulting in a facile loss of H2O molecules and giving rise to V10O26 2- as the lowest-mass fragment ion. Water loss was also observed for V10O28 anions carrying an odd number of hydrogen atoms (e.g., H5V10O28 -), followed by a less efficient and incomplete removal of an OH• radical, giving rise to both HV10O26 - and V10O25 - fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase.

19.
Curr Opin Chem Biol ; 69: 102155, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643024

RESUMEN

Transition metal ions play key structural and functional roles, affecting structures of biomolecules and enzyme function. The importance of transition metal ions in chemical biology is, thus, undisputed. However, the aqueous chemistry of metal ions is complicated because they form species in several protonation and redox states. In the presence of metabolites, metal ions can also form coordination complexes. The existence of several species is relevant because enzymes and membrane receptors can distinguish between species even when they are rapidly equilibrating. Thus, metal ions, enzyme cofactors, and therapeutic agents are sensitive to the metal ion speciation chemistry because it affects their interaction with enzymes and other biomolecules. Speciation is also crucial for metal-containing bioorthogonal reactions, since water and metabolites stabilize active catalysts, affect chemoselectivity and reaction yields.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Biología , Complejos de Coordinación/química , Iones , Metales/química , Elementos de Transición/química , Agua
20.
Pharmaceutics ; 14(4)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35456624

RESUMEN

Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...