Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(22): eadg0288, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267362

RESUMEN

Protected areas are essential to biodiversity conservation. Creating new parks can protect larger populations and more species, yet strengthening existing parks, particularly those vulnerable to harmful human activities, is a critical but underappreciated step for safeguarding at-risk species. Here, we model the area of habitat that terrestrial mammals, amphibians, and birds have within park networks and their vulnerability to current downgrading, downsizing, or degazettement events and future land-use change. We find that roughly 70% of species analyzed have scant representation in parks, or occur within parks that are affected by shifts in formal legal protections or are vulnerable to increased human pressures. Our results also show that expanding and strengthening park networks across just 1% of the world's land area could preserve irreplaceable habitats of 1191 species that are particularly vulnerable to extinction.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Humanos , Conservación de los Recursos Naturales/métodos , Ecosistema , Anfibios , Mamíferos
2.
Nat Commun ; 14(1): 211, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639376

RESUMEN

The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.


Asunto(s)
Aves , Cambio Climático , Animales , Aves/fisiología , Biodiversidad , Temperatura , Ecosistema , Clima Desértico
4.
Sci Adv ; 8(21): eabm8999, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613262

RESUMEN

Hundreds of millions of hectares of cropland have been abandoned globally since 1950 due to demographic, economic, and environmental changes. This abandonment has been seen as an important opportunity for carbon sequestration and habitat restoration; yet those benefits depend on the persistence of abandonment, which is poorly known. Here, we track abandonment and recultivation at 11 sites across four continents using annual land-cover maps for 1987-2017. We find that abandonment is largely fleeting, lasting on average only 14.22 years (SD = 1.44). At most sites, we project that >50% of abandoned croplands will be recultivated within 30 years, precluding the accumulation of substantial amounts of carbon and biodiversity. Recultivation resulted in 30.84% less abandonment and 35.39% less carbon accumulated by 2017 than expected without recultivation. Unless policymakers take steps to reduce recultivation or provide incentives for regeneration, abandonment will remain a missed opportunity to reduce biodiversity loss and climate change.

5.
Ecol Appl ; 31(7): e02396, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34180111

RESUMEN

For biodiversity protection to play a persuasive role in land-use planning, conservationists must be able to offer objective systems for ranking which natural areas to protect or convert. Representing biodiversity in spatially explicit indices is challenging because it entails numerous judgments regarding what variables to measure, how to measure them, and how to combine them. Surprisingly few studies have explored this variation. Here, we explore how this variation affects which areas are selected for agricultural conversion by a land-use prioritization model designed to reduce the biodiversity losses associated with agricultural expansion in Zambia. We first explore the similarity between model recommendations generated by three recently published composite indices and a commonly used rarity-weighted species richness metric. We then explore four underlying sources of ecological and methodological variation within these and other approaches, including different terrestrial vertebrate taxonomic groups, different species-richness metrics, different mathematical methods for combining layers, and different spatial resolutions of inputs. The results generated using different biodiversity approaches show very low spatial agreement regarding which areas to convert to agriculture. There is little overlap in areas identified for conversion using previously published indices (mean Jaccard similarity, Jw , between 0.3 and 3.7%), different taxonomic groups (5.0% < mean Jw  < 13.5%), or different measures of species richness (15.6% < mean Jw  < 33.7%). Even with shared conservation goals, different methods for combining layers and different input spatial resolutions still produce meaningful, though smaller, differences among areas selected for conversion (40.9% < mean Jw  < 67.5%). The choice of taxonomic group had the largest effect on conservation priorities, followed by the choice of species richness metric, the choice of combination method, and finally the choice of spatial resolution. These disagreements highlight the challenge of objectively representing biodiversity in land-use planning tools, and present a credibility challenge for conservation scientists seeking to inform policy making. Our results suggest an urgent need for a more consistent and transparent framework for designing the biodiversity indices used in land-use planning, which we propose here.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agricultura , Ecosistema , Zambia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...