Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 9(1): 50, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355663

RESUMEN

The Moon is a geological history book, preserving information about the history of the Solar System, including the formation and early evolution of the terrestrial planets and their bombardment histories, as well as providing insight into other fundamental Solar System processes. These topics form the basis for science "of the Moon", but the lunar surface is also a platform for science "on the Moon" and "from the Moon"-including astronomical observations, fundamental physics, and life science investigations. Recently, the Moon has become a destination for technology research and development-in particular for developing in situ resources, human exploration, and habitation, and for its potential use as a waypoint for the human exploration of Mars. This paper, based on recommendations originally proposed in a White Paper for ESA's SciSpacE strategy, outlines key lunar science questions that may be addressed by future space exploration missions and makes recommendations for the next decades.

2.
Biotechnol Adv ; 59: 107946, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35318100

RESUMEN

Establishing the first human presence on Mars will be the most technically challenging undertaking yet in the exploration beyond our planet. The remoteness of Mars from Earth, the inhospitable surface conditions including low atmospheric pressure and cold temperatures, and the need for basic resources including water, pose a formidable challenge to this endeavour. The intersection of multiple disciplines will be required to provide solutions for temporary and eventually permanent Martian habitation. This review considers the role cyanobacteria and eukaryotic microalgae (collectively referred to here as 'microalgae') may have in supporting missions to the red planet. The current research using these microorganisms in biological life support systems is discussed, with a systematic analysis of their usage in each system conducted. The potential of microalgae to provide astronauts with oxygen, food, bio-polymers and pharmaceuticals is considered. An overview of microalgal experiments in space missions across the last 60 years is presented, and the research exploring the technical challenges of cultivation on Mars is discussed. From these findings, an argument for culturing microalgae in subterranean bioreactors is proposed. Finally, future synthetic biology approaches for enhancing the cyanobacterial/microalgal role in supporting human deep-space exploration are presented. We show that microalgae hold significant promise for providing solutions to many problems faced by the first Martian settlers, however these can only be realised with significant infrastructure and a reliable power source.


Asunto(s)
Cianobacterias , Marte , Microalgas , Vuelo Espacial , Medio Ambiente Extraterrestre , Humanos
3.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190562, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33222641

RESUMEN

The lunar surface has been exposed to the space environment for billions of years and during this time has accumulated records of a wide range of astrophysical phenomena. These include solar wind particles and the cosmogenic products of solar particle events which preserve a record of the past evolution of the Sun, and cosmogenic nuclides produced by high-energy galactic cosmic rays which potentially record the galactic environment of the Solar System through time. The lunar surface may also have accreted material from the local interstellar medium, including supernova ejecta and material from interstellar clouds encountered by the Solar System in the past. Owing to the Moon's relatively low level of geological activity, absence of an atmosphere, and, for much of its history, lack of a magnetic field, the lunar surface is ideally suited to collect these astronomical records. Moreover, the Moon exhibits geological processes able to bury and thus both preserve and 'time-stamp' these records, although gaining access to them is likely to require a significant scientific infrastructure on the lunar surface. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

5.
Astrobiology ; 16(11): 900-912, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870583

RESUMEN

Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm-2 at 4-13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation-Moon-Regolith-Amino acids-Biomarkers. Astrobiology 16, 900-912.


Asunto(s)
Medio Ambiente Extraterrestre , Luna , Compuestos Orgánicos/análisis , Radiación , Aminoácidos/análisis , Biomarcadores/análisis , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/análisis , Polímeros/análisis , Solventes
6.
Astrobiology ; 15(2): 154-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25615648

RESUMEN

The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.


Asunto(s)
Evolución Química , Exobiología/métodos , Luna , Sistema Solar , Planeta Tierra , Cromatografía de Gases y Espectrometría de Masas , Geología , Calor , Hidroxibutiratos/química , Meteoroides , Planetas Menores , Planetas , Solventes , Temperatura , Erupciones Volcánicas
7.
Philos Trans A Math Phys Eng Sci ; 372(2024): 20130315, 2014 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-25114318

RESUMEN

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.

8.
Astrobiology ; 11(7): 695-710, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21877914

RESUMEN

Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.


Asunto(s)
Planeta Tierra , Hielo , Marte , Erupciones Volcánicas , Ecosistema , Exobiología , Sedimentos Geológicos/análisis
9.
Astrobiology ; 10(9): 933-51, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21118025

RESUMEN

The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.


Asunto(s)
Exobiología/instrumentación , Sedimentos Geológicos/análisis , Compuestos de Aluminio/análisis , Compuestos de Aluminio/química , Carbonatos/análisis , Carbonatos/química , Compuestos Férricos/análisis , Compuestos Férricos/química , Sedimentos Geológicos/química , Geología/instrumentación , Geología/métodos , Compuestos de Potasio/análisis , Compuestos de Potasio/química , Sulfatos/análisis , Sulfatos/química
10.
Astrobiology ; 10(8): 853-6; discussion 857-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21087164

RESUMEN

Following on from ideas presented in a recent paper by Schneider et al. on "The Far Future of Exoplanet Direct Characterization," I argue that they have exaggerated the technical obstacles to performing such "direct characterization" by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something that will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of showstopper suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.


Asunto(s)
Polvo Cósmico , Exobiología , Medio Ambiente Extraterrestre/química , Predicción
11.
Astrobiology ; 10(6): 577-87, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20735249

RESUMEN

An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.


Asunto(s)
Vuelo Espacial , Adaptación Fisiológica , Exobiología , Medio Ambiente Extraterrestre , Fenómenos Geológicos , Humanos , Marte , Luna , Medición de Riesgo , Sistema Solar , Vuelo Espacial/instrumentación , Vuelo Espacial/métodos
12.
Astrobiology ; 8(2): 242-52, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18393690

RESUMEN

Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (

Asunto(s)
Meteoroides , Luna , Exobiología , Medio Ambiente Extraterrestre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA