Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668169

RESUMEN

The sensing of stress under harsh environmental conditions with high resolution has critical importance for a range of applications including earth's subsurface scanning, geological CO2 storage monitoring, and mineral and resource recovery. Using a first-principles density functional theory (DFT) approach combined with the theoretical modelling of the low-energy Hamiltonian, here, we investigate a novel approach to detect unprecedented levels of pressure by taking advantage of the solid-state electronic spin of nitrogen-vacancy (NV) centers in diamond. We computationally explore the effect of strain on the defect band edges and band gaps by varying the lattice parameters of a diamond supercell hosting a single NV center. A low-energy Hamiltonian is developed that includes the effect of stress on the energy level of a ±1 spin manifold at the ground state. By quantifying the energy level shift and split, we predict pressure sensing of up to 0.3 MPa/Hz using the experimentally measured spin dephasing time. We show the superiority of the quantum sensing approach over traditional optical sensing techniques by discussing our results from DFT and theoretical modelling for the frequency shift per unit pressure. Importantly, we propose a quantum manometer that could be useful to measure earth's subsurface vibrations as well as for pressure detection and monitoring in high-temperature superconductivity studies and in material sciences. Our results open avenues for the development of a sensing technology with high sensitivity and resolution under extreme pressure limits that potentially has a wider applicability than the existing pressure sensing technologies.

2.
ACS Appl Mater Interfaces ; 13(6): 7268-7277, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33534542

RESUMEN

Rare earth elements (REEs) are critical to numerous technologies; however, a combination of increasing demand, environmental concerns, and monopolistic marketplace conditions has spurred interest in boosting the domestic REE production from sources such as coal utilization byproducts. The economic viability of this approach requires rapid, inexpensive, and sensitive analytical techniques capable of characterizing the REE content during resource exploration and downstream REE processing (e.g., analyzing REE separation, concentration, and purification production steps). Luminescence-based sensors are attractive because many REEs may be sensitized to produce element-specific emission. Hence, a single material may simultaneously detect and distinguish multiple REEs. Metal-organic frameworks (MOFs) can sensitize multiple REEs, but their viability has been hindered by sensitivity and selectivity challenges. Understanding how the MOF structure impacts the REE sensing efficacy is critical to the rational design of new sensors. Here, we evaluate the sensing performance of seven different anionic zinc-adeninate MOFs with different organic linkers and/or structures for the visible-emitting REEs Tb, Dy, Sm, and Eu. The choice of a linker determines which REEs are sensitized and significantly influences their sensitivity and selectivity against competing species (here, Fe(II) and HCl). For a given linker, structural changes to the MOF can further fine-tune the performance. The MOFs produce some of the lowest detection limits (sub-10 ppb for Tb) reported for the aqueous sensitization-based REE detection. Importantly, the most selective MOFs demonstrated the ability to sensitize the REE signal at sub-ppm levels in a REE-spiked acid mine drainage matrix, highlighting their potential for use in real-world sensing applications.

3.
ACS Sens ; 4(8): 1986-1991, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31361472

RESUMEN

Rare earth elements (REEs) are strategically important for national security and advanced technologies. Consequently, significant effort has been devoted towards increasing REE domestic production, including the extraction of REEs from coal, coal combustion byproducts, and their associated waste streams such as acid mine drainage. Analytical techniques for rapid quantification of REE content in aqueous phases can facilitate REE recovery through rapid identification of high-value waste streams. In this work, we show that BioMOF-100 can be used as a fluorescent-based sensitizer for emissive REE ion detection in water, providing rapid (<10 min) analysis times and sensitive detection (parts-per-billion detection limits) for terbium, dysprosium, samarium, europium, ytterbium, and neodymium, even in the presence of acids or secondary metals.


Asunto(s)
Adenina/química , Técnicas Electroquímicas , Mediciones Luminiscentes , Estructuras Metalorgánicas/química , Metales de Tierras Raras/análisis , Zinc/química , Estructura Molecular , Procesos Fotoquímicos , Agua/química
4.
Nano Lett ; 19(4): 2384-2388, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30855150

RESUMEN

The syntheses, properties, and broad utility of noble metal plasmonic nanomaterials are now well-established. To capitalize on this exceptional utility, mitigate its cost, and potentially expand it, non-noble metal plasmonic materials have become a topic of widespread interest. As new plasmonic materials come online, it is important to understand and assess their ability to generate comparable or complementary plasmonic properties to their noble metal counterparts, including as both sensing and photoredox materials. Here, we study plasmon-driven chemistry on degenerately doped copper selenide (Cu2- xSe) nanoparticles. In particular, we observe plasmon-driven dimerization of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene on Cu2- xSe surfaces with yields comparable to those observed from noble metal nanoparticles. Overall, our results indicate that doped semiconductor nanoparticles are promising for light-driven chemistry technologies.

5.
Acc Chem Res ; 52(3): 695-703, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30742413

RESUMEN

From size-dependent luminescence to localized surface plasmon resonances, the optical properties that emerge from common materials with nanoscale dimensions have been revolutionary. As nanomaterials get smaller, they approach molecular electronic structures, and this transition from bulk to molecular electronic properties is a subject of far-reaching impact. One class of nanomaterials that exhibit particularly interesting optoelectronic features at this size transition are coinage metal (i.e., group 11 elements copper, silver, and gold) nanoparticles with core diameters between approximately 1 to 3 nm (∼25-200 atoms). Coinage metal nanoparticles can exhibit red or near-infrared photoluminescence features that are not seen in either their molecular or larger nanoscale counterparts. This emission has been exploited both as a probe of electronic behavior at the nanoscale as well as in critical applications such as biological imaging and chemical sensing. Interestingly, it has been demonstrated that their photoluminescence figures of merit such as emission quantum yield, energy, and lifetime are largely independent of particle diameter. Instead, emission from particles at this size range depends heavily on the particle surface chemistry, which includes both its metallic composition and the capping ligand architecture. The strong influence of surface chemistry on these emergent optoelectronic phenomena has powerful implications for both the study and use of these particles, primarily due to the theoretically limitless possible surface ligand architectures and metallic compositions. In this Account, we highlight recent work that studies and uses surface chemistry-mediated photoluminescence from coinage metal nanoparticles. Specifically, we emphasize the distinct, as well as synergistic, roles of the nanoparticle capping ligand and the nanoparticle core for controlling and/or enhancing their near-infrared photoluminescence. We then discuss the implications of surface chemistry-mediated photoluminescence as it relates to downstream applications such as energy transfer, sensing, and biological imaging. We conclude by discussing current challenges that remain in the field, including opportunities to develop new particle synthetic routes, analytical tools, and physical frameworks with which to understand small nanoparticle emission. Taken together, we anticipate that these materials will be foundational both in understanding the unique transition from molecular to bulk electronic structures and in the development of nanomaterials that leverage this transition.

6.
J Am Chem Soc ; 139(49): 17767-17770, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29185732

RESUMEN

Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 106 M-1 cm-1) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

7.
Analyst ; 142(1): 11-29, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27901132

RESUMEN

Colloidal inorganic nanoparticles are being used in an increasingly large number of applications ranging from biological imaging to television displays. In all cases, nanoparticle surface chemistry can significantly impact particle physical properties, processing, and performance. The first step in leveraging this tunability is to develop analytical approaches to describe surface chemical features. Some of the most basic descriptors of particle surface chemistry include the quantity, identity, and arrangement of ligands appended to the particle core. Here, we review approaches to quantify molecular ligand densities on nanoparticle surfaces and consider fundamental barriers to the accuracy of this analysis including parameters such as dispersity in colloidal nanoparticle samples, particle-ligand interactions, and currently available analytical techniques. Techniques reviewed include widely studied methods such as optical, atomic, vibrational, and nuclear magnetic resonance spectroscopies as well as emerging or niche approaches including electrospray-differential mobility analysis, pH-based methods, and X-ray photoelectron spectroscopy. Collectively, these studies elucidate surface chemistry architectures that accelerate both fundamental understanding of nanoscale physical phenomena and the implementation of these materials in a wide range of technologies.

8.
Chem Commun (Camb) ; 52(58): 9020-3, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27030960

RESUMEN

Here, we use solution and solid-state (31)P NMR to study the ligand environment of water soluble, phosphine-terminated gold nanoparticles. The resulting spectra indicate that particle-bound phosphine ligands occupy an unexpectedly monodisperse ligand environment. This uniformity then facilitates one of the first descriptions of distinct (31)P-(197)Au coupling in colloidal nanoparticles.

9.
J Am Chem Soc ; 137(45): 14423-9, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26544649

RESUMEN

Small gold nanoparticles (∼1.4-2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 ± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 µs, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (Au(I)-S-R)n impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures.

10.
Anal Chem ; 87(5): 2771-8, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25658511

RESUMEN

We use nuclear magnetic resonance spectroscopy methods to quantify the extent of ligand exchange between different types of thiolated molecules on the surface of gold nanoparticles. Specifically, we determine ligand density values for single-moiety ligand shells and then use these data to describe ligand exchange behavior with a second, thiolated molecule. Using these techniques, we identify trends in gold nanoparticle functionalization efficiency with respect to ligand type, concentration, and reaction time as well as distinguish between functionalization pathways where the new ligand may either replace the existing ligand shell (exchange) or add to it ("backfilling"). Specifically, we find that gold nanoparticles functionalized with thiolated macromolecules, such as poly(ethylene glycol) (1 kDa), exhibit ligand exchange efficiencies ranging from 70% to 95% depending on the structure of the incoming ligand. Conversely, gold nanoparticles functionalized with small-molecule thiolated ligands exhibit exchange efficiencies as low as 2% when exposed to thiolated molecules under identical exchange conditions. Taken together, the reported results provide advances in the fundamental understanding of mixed ligand shell formation and will be important for the preparation of gold nanoparticles in a variety of biomedical, optoelectronic, and catalytic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...