Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35038782

RESUMEN

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Asunto(s)
Pradera , Herbivoria , Biodiversidad , Ecosistema , Nutrientes
3.
Nat Commun ; 11(1): 5375, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097736

RESUMEN

Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.


Asunto(s)
Biota , Ecosistema , Eutrofización , Pradera , Biodiversidad , Biomasa , Fertilización , Modelos Biológicos , Plantas
4.
Ecol Evol ; 4(22): 4258-69, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25540688

RESUMEN

Darwin's naturalization hypothesis predicts that invasive species should perform better in their novel range in the absence of close relatives in the native flora due to reduced competition. Evidence from recent taxonomic and phylogenetic-based studies, however, is equivocal. We test Darwin's naturalization hypothesis at two different spatial scales using a fossil-dated molecular phylogenetic tree of the British native and alien flora (ca. 1600 species) and extensive, fine-scale survey data from the 1998 Countryside Survey. At both landscape and local scales, invasive species were neither significantly more nor less related to the native flora than their non-invasive alien counterparts. Species invasiveness was instead correlated with higher nitrogen and moisture preference, but not other life history traits such as life-form and height. We argue that invasive species spread in Britain is hence more likely determined by changes in land use and other anthropogenic factors, rather than evolutionary history. Synthesis. The transition from non-invasive to invasive is not related to phylogenetic distinctiveness to the native community, but instead to their environmental preferences. Therefore, combating biological invasions in the Britain and other industrialized countries need entirely different strategies than in more natural environments.

5.
Ecol Lett ; 16(4): 513-21, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23347060

RESUMEN

Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.


Asunto(s)
Poaceae/fisiología , Animales , Ecosistema , Fertilizantes , Herbivoria , Modelos Biológicos , Poaceae/crecimiento & desarrollo , Dinámica Poblacional
6.
PLoS One ; 7(10): e48106, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118934

RESUMEN

Originally from Asia, Rubus niveus has become one of the most widespread invasive plant species in the Galapagos Islands. It has invaded open vegetation, shrubland and forest alike. It forms dense thickets up to 4 m high, appearing to displace native vegetation, and threaten the integrity of several native communities. This study used correlation analysis between a R. niveus cover gradient and a number of biotic (vascular plant species richness, cover and vegetation structure) and abiotic (light and soil properties) parameters to help understand possible impacts in one of the last remaining fragments of the Scalesia forest in Santa Cruz Island, Galapagos. Higher cover of R. niveus was associated with significantly lower native species richness and cover, and a different forest structure. Results illustrated that 60% R. niveus cover could be considered a threshold for these impacts. We suggest that a maximum of 40% R. niveus cover could be a suitable management target.


Asunto(s)
Asteraceae , Especies Introducidas , Rosaceae , Ecosistema , Ecuador , Especies en Peligro de Extinción , Concentración de Iones de Hidrógeno , Suelo/análisis , Suelo/química , Luz Solar , Árboles
7.
New Phytol ; 196(1): 101-109, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22803633

RESUMEN

• The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. • Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n = 21) and concentrations of eleven mineral elements were determined in dried shoot material. • Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species × treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca > Mg > Ni > S > Na > Zn > K > Cu > Fe > Mn > P. • Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.


Asunto(s)
Metaboloma , Metabolómica/métodos , Brotes de la Planta/metabolismo , Poaceae/metabolismo , Biomasa , Calcio/metabolismo , Análisis Discriminante , Inglaterra , Fertilizantes , Iones , Funciones de Verosimilitud , Magnesio/metabolismo , Minerales/metabolismo , Carácter Cuantitativo Heredable , Especificidad de la Especie , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...