Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Med Sci Sports Exerc ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768076

RESUMEN

PURPOSE: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices against camera-annotated ground truth. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and assess its association with cardiovascular and all-cause mortality in a large prospective cohort. METHODS: We developed and externally validated a self-supervised machine learning step detection model, trained on an open-source and step-annotated free-living dataset. 39 individuals will free-living ground-truth annotated step counts were used for model development. An open-source dataset with 30 individuals was used for external validation. Epidemiological analysis was performed using 75,263 UK Biobank participants without prevalent cardiovascular disease (CVD) or cancer. Cox regression was used to test the association of daily step count with fatal CVD and all-cause mortality after adjustment for potential confounders. RESULTS: The algorithm substantially outperformed reference models (free-living mean absolute percent error of 12.5%, versus 65-231%). Our data indicate an inverse dose-response association, where taking 6,430-8,277 daily steps was associated with 37% [25-48%] and 28% [20-35%] lower risk of fatal CVD and all-cause mortality up to seven years later, compared to those taking fewer steps each day. CONCLUSIONS: We have developed an open and transparent method that markedly improves the measurement of steps in large-scale wrist-worn accelerometer datasets. The application of this method demonstrated expected associations with CVD and all-cause mortality, indicating excellent face validity. This reinforces public health messaging for increasing physical activity and can help lay the groundwork for the inclusion of target step counts in future public health guidelines.

2.
NPJ Digit Med ; 7(1): 91, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609437

RESUMEN

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

3.
NPJ Digit Med ; 7(1): 33, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347090

RESUMEN

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients' Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life-through objective and remote digital outcomes-paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials.

4.
IEEE Rev Biomed Eng ; 17: 180-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37186539

RESUMEN

Heart rate variability (HRV) is an important metric with a variety of applications in clinical situations such as cardiovascular diseases, diabetes mellitus, and mental health. HRV data can be potentially obtained from electrocardiography and photoplethysmography signals, then computational techniques such as signal filtering and data segmentation are used to process the sampled data for calculating HRV measures. However, uncertainties arising from data acquisition, computational models, and physiological factors can lead to degraded signal quality and affect HRV analysis. Therefore, it is crucial to address these uncertainties and develop advanced models for HRV analysis. Although several reviews of HRV analysis exist, they primarily focus on clinical applications, trends in HRV methods, or specific aspects of uncertainties such as measurement noise. This paper provides a comprehensive review of uncertainties in HRV analysis, quantifies their impacts, and outlines potential solutions. To the best of our knowledge, this is the first study that presents a holistic review of uncertainties in HRV methods and quantifies their impacts on HRV measures from an engineer's perspective. This review is essential for developing robust and reliable models, and could serve as a valuable future reference in the field, particularly for dealing with uncertainties in HRV analysis.


Asunto(s)
Enfermedades Cardiovasculares , Electrocardiografía , Humanos , Frecuencia Cardíaca/fisiología , Electrocardiografía/métodos , Fotopletismografía/métodos
5.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765761

RESUMEN

Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction. To ensure early detection and effective management of ANS dysfunction, patients require continuous monitoring of vital signs using bedside monitors. Wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative to bedside monitors. Machine learning-based ECG analysis can be a valuable resource for classifying tetanus severity; however, using existing ECG signal analysis is excessively time-consuming. Due to the fixed-sized kernel filters used in traditional convolutional neural networks (CNNs), they are limited in their ability to capture global context information. In this work, we propose a 2D-WinSpatt-Net, which is a novel Vision Transformer that contains both local spatial window self-attention and global spatial self-attention mechanisms. The 2D-WinSpatt-Net boosts the classification of tetanus severity in intensive-care settings for LMIC using wearable ECG sensors. The time series imaging-continuous wavelet transforms-is transformed from a one-dimensional ECG signal and input to the proposed 2D-WinSpatt-Net. In the classification of tetanus severity levels, 2D-WinSpatt-Net surpasses state-of-the-art methods in terms of performance and accuracy. It achieves remarkable results with an F1 score of 0.88 ± 0.00, precision of 0.92 ± 0.02, recall of 0.85 ± 0.01, specificity of 0.96 ± 0.01, accuracy of 0.93 ± 0.02 and AUC of 0.90 ± 0.00.


Asunto(s)
Tétanos , Humanos , Países en Desarrollo , Electrocardiografía , Pacientes , Cuidados Críticos
6.
IEEE J Biomed Health Inform ; 27(7): 3633-3644, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37134029

RESUMEN

Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using smartphone sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Teléfono Inteligente , Marcha
7.
medRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37205346

RESUMEN

Background: Step count is an intuitive measure of physical activity frequently quantified in a range of health-related studies; however, accurate quantification of step count can be difficult in the free-living environment, with step counting error routinely above 20% in both consumer and research-grade wrist-worn devices. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and to assess its association with cardiovascular and all-cause mortality in a large prospective cohort study. Methods: We developed and externally validated a hybrid step detection model that involves self-supervised machine learning, trained on a new ground truth annotated, free-living step count dataset (OxWalk, n=39, aged 19-81) and tested against other open-source step counting algorithms. This model was applied to ascertain daily step counts from raw wrist-worn accelerometer data of 75,493 UK Biobank participants without a prior history of cardiovascular disease (CVD) or cancer. Cox regression was used to obtain hazard ratios and 95% confidence intervals for the association of daily step count with fatal CVD and all-cause mortality after adjustment for potential confounders. Findings: The novel step algorithm demonstrated a mean absolute percent error of 12.5% in free-living validation, detecting 98.7% of true steps and substantially outperforming other recent wrist-worn, open-source algorithms. Our data are indicative of an inverse dose-response association, where, for example, taking 6,596 to 8,474 steps per day was associated with a 39% [24-52%] and 27% [16-36%] lower risk of fatal CVD and all-cause mortality, respectively, compared to those taking fewer steps each day. Interpretation: An accurate measure of step count was ascertained using a machine learning pipeline that demonstrates state-of-the-art accuracy in internal and external validation. The expected associations with CVD and all-cause mortality indicate excellent face validity. This algorithm can be used widely for other studies that have utilised wrist-worn accelerometers and an open-source pipeline is provided to facilitate implementation.

8.
IEEE Open J Eng Med Biol ; 3: 202-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578776

RESUMEN

Goal: Smartphone and wearable devices may act as powerful tools to remotely monitor physical function in people with neurodegenerative and autoimmune diseases from out-of-clinic environments. Detection of progression onset or worsening of symptoms is especially important in people living with multiple sclerosis (PwMS) in order to enable optimally adapted therapeutic strategies. MS symptoms typically follow subtle and fluctuating disease courses, patient-to-patient, and over time. Current in-clinic assessments are often too infrequently administered to reflect longitudinal changes in MS impairment that impact daily life. This work, therefore, explores how smartphones can administer daily two-minute walking assessments to monitor PwMS physical function at home. Methods: Remotely collected smartphone inertial sensor data was transformed through state-of-the-art Deep Convolutional Neural Networks, to estimate a participant's daily ambulatory-related disease severity, longitudinally over a 24-week study. Results: This study demonstrated that smartphone-based ambulatory severity outcomes could accurately estimate MS level of disability, as measured by the EDSS score ([Formula: see text]: 0.56,[Formula: see text]0.001). Furthermore, longitudinal severity outcomes were shown to accurately reflect individual participants' level of disability over the study duration. Conclusion: Smartphone-based assessments, that can be performed by patients from their home environments, could greatly augment standard in-clinic outcomes for neurodegenerative diseases. The ability to understand the impact of disease on daily-life between clinical visits, through objective digital outcomes, paves the way forward to better measure and identify signs of disease progression that may be occurring out-of-clinic, to monitor how different patients respond to various treatments, and to ultimately enable the development of better, and more personalised care.

9.
Sci Rep ; 11(1): 14301, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253769

RESUMEN

The emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8-15%. A lack of transparency of "black-box" deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


Asunto(s)
Aprendizaje Profundo , Esclerosis Múltiple/fisiopatología , Teléfono Inteligente , Actividades Humanas , Humanos , Redes Neurales de la Computación
10.
IEEE J Biomed Health Inform ; 25(3): 838-849, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750915

RESUMEN

Leveraging consumer technology such as smartphone and smartwatch devices to objectively assess people with multiple sclerosis (PwMS) remotely could capture unique aspects of disease progression. This study explores the feasibility of assessing PwMS and Healthy Control's (HC) physical function by characterising gait-related features, which can be modelled using machine learning (ML) techniques to correctly distinguish subgroups of PwMS from healthy controls. A total of 97 subjects (24 HC subjects, 52 mildly disabled (PwMSmild, EDSS [0-3]) and 21 moderately disabled (PwMSmod, EDSS [3.5-5.5]) contributed data which was recorded from a Two-Minute Walk Test (2MWT) performed out-of-clinic and daily over a 24-week period. Signal-based features relating to movement were extracted from sensors in smartphone and smartwatch devices. A large number of features (n = 156) showed fair-to-strong (R 0.3) correlations with clinical outcomes. LASSO feature selection was applied to select and rank subsets of features used for dichotomous classification between subject groups, which were compared using Logistic Regression (LR), Support Vector Machines (SVM) and Random Forest (RF) models. Classifications of subject types were compared using data obtained from smartphone, smartwatch and the fusion of features from both devices. Models built on smartphone features alone achieved the highest classification performance, indicating that accurate and remote measurement of the ambulatory characteristics of HC and PwMS can be achieved with only one device. It was observed however that smartphone-based performance was affected by inconsistent placement location (running belt versus pocket). Results show that PwMSmod could be distinguished from HC subjects (Acc. 82.2 ± 2.9%, Sen. 80.1 ± 3.9%, Spec. 87.2 ± 4.2%, F 1 84.3 ± 3.8), and PwMSmild (Acc. 82.3 ± 1.9%, Sen. 71.6 ± 4.2%, Spec. 87.0 ± 3.2%, F 1 75.1 ± 2.2) using an SVM classifier with a Radial Basis Function (RBF). PwMSmild were shown to exhibit HC-like behaviour and were thus less distinguishable from HC (Acc. 66.4 ± 4.5%, Sen. 67.5 ± 5.7%, Spec. 60.3 ± 6.7%, F 1 58.6 ± 5.8). Finally, it was observed that subjects in this study demonstrated low intra- and high inter-subject variability which was representative of subject-specific gait characteristics.


Asunto(s)
Esclerosis Múltiple , Caminata , Marcha , Humanos , Esclerosis Múltiple/diagnóstico , Teléfono Inteligente , Prueba de Paso
11.
J Am Med Dir Assoc ; 19(1): 53-58, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899662

RESUMEN

OBJECTIVES: Slow gait has been shown to be a good predictor of declining cognitive function in healthy older adults. Motoric cognitive risk (MCR) syndrome is a new construct incorporating slow gait and subjective cognitive complaints in individuals without dementia who have preserved activities of daily living. This analysis investigated the prevalence of MCR and factors associated with MCR in a nationally representative population. In addition, cross-sectional associations between MCR and cognitive domains, an relationship yet to be fully elucidated in literature, was investigated. MEASUREMENTS: Participants completed a comprehensive neuropsychological assessment and gait analysis at a health assessment center. Logistic regression was employed to examine associated health factors. Composite scores reflecting global cognition, memory, sustained attention, executive function, and processing speed were constructed using neuropsychological test scores. Associations between MCR and these composites were quantified using multivariate generalized linear modelling. All analyses were weighted to be nationally representative. SETTING: Community-dwelling adults in The Irish Longitudinal Study on Aging (TILDA) completed an interview and a center-based health assessment. PARTICIPANTS: Participants aged 60 years and over (n = 2151, age; mean: 67.84 years, range: 60-93) were included. Participants with a Mini-Mental State Examination score of below 24, a diagnosis of serious memory impairment, Parkinson disease, dementia, or Alzheimer disease were excluded. RESULTS: MCR prevalence was estimated at 2.56% (95% confidence interval 1.97, 3.31). Significant risk factors for MCR were antidepressant use [odds ratio (OR) 4.46, P < .001], self-reported poor vision (OR 4.92, P < .05), and obesity (OR 2.29, P < .01). Individuals with MCR performed worse on tests that assess memory (B: -0.58, P < .001), global cognition (B: -0.42, P < .001), and sustained attention (B: -0.34, P < .05) with robust adjustment made for confounding demographic and health variables. CONCLUSIONS: MCR is characterized by strong negative associations with global cognition, attention, and memory. This may be indicative of the underlying pathology of MCR. The effect of antidepressant use on MCR is novel and may represent an important consideration in future studies.


Asunto(s)
Atención , Trastornos del Conocimiento/epidemiología , Marcha/fisiología , Vida Independiente/estadística & datos numéricos , Velocidad al Caminar , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Envejecimiento/psicología , Trastornos del Conocimiento/diagnóstico , Estudios Transversales , Femenino , Evaluación Geriátrica/métodos , Humanos , Incidencia , Irlanda , Modelos Logísticos , Estudios Longitudinales , Masculino , Trastornos de la Memoria/epidemiología , Persona de Mediana Edad , Destreza Motora , Pruebas Neuropsicológicas , Pronóstico , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...