Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430907

RESUMEN

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Porcinos , Proteínas Virales/genética , Neuraminidasa , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Monoclonales , Anticuerpos Antivirales
2.
Nat Comput Sci ; 3(2): 164-173, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177625

RESUMEN

Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.


Asunto(s)
Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA