Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271622

RESUMEN

Polygala paniculata L. is a native plant from tropical America. The therapeutic potential of the hydroalcoholic extract of P. paniculata (HEPp) has been scientifically explored due to folk medicine reports on its action against several afflictions. HEPp contains several bioactive molecules with neuroprotective activities, making it a promising candidate for stroke treatment. This study used electrophysiological, biochemical, and in vivo experiments to evaluate the molecular mechanisms underlying HEPp as a neuroprotective therapy for stroke targeting Pannexin-1 (Panx1). Panx1 is a non-selective channel that opens during ischemia and contributes to neuronal death. HEPp was not toxic to cortical neurons and pre-treatment with the extract reduced neuronal death promoted by oxygen and glucose deprivation in a dose-dependent manner. Additionally, HEPp blocked Panx1 currents in a dose-dependent manner and the effect, which was shown to be partially due to rutin. Animals submitted to photothrombosis and post-treated with HEPp had reduced infarct volume, and the effective dose was lower in males (1 mg/kg) than in females (10 mg/kg). On the other hand, in Panx1 KD mice (50% Panx1 levels), the acute treatment reduced the infarct volume only in males. Upon chronic treatment with HEPp, a reduction in Panx1 protein levels was observed. The current study provides reliable evidence of the neuroprotective properties of HEPp in both in vitro and in vivo models of stroke. The underlying mechanism involves, at least in part, the inhibition of Panx1 channel function and possibly downregulation of protein levels, suppressing the secondary events that lead to apoptosis and inflammation.

2.
Cell Death Differ ; 28(5): 1627-1643, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33277577

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra resulting in severe and progressive motor impairments. However, the mechanisms underlying this neuronal loss remain largely unknown. Oxidative stress and ER stress have been implicated in PD and these factors are known to activate the integrated stress response (ISR). Activating transcription factor 4 (ATF4), a key mediator of the ISR, and has been reported to induce the expression of genes involved in cellular homeostasis. However, during prolonged activation ATF4 can also induce the expression of pro-death target genes. Therefore, in the present study, we investigated the role of ATF4 in neuronal cell death in models of PD. We demonstrate that PD neurotoxins (MPP+ and 6-OHDA) and α-synuclein aggregation induced by pre-formed human alpha-synuclein fibrils (PFFs) cause sustained upregulation of ATF4 expression in mouse cortical and mesencephalic dopaminergic neurons. Furthermore, we demonstrate that PD neurotoxins induce the expression of the pro-apoptotic factors Chop, Trb3, and Puma in dopaminergic neurons in an ATF4-dependent manner. Importantly, we have determined that PD neurotoxin and α-synuclein PFF induced neuronal death is attenuated in ATF4-deficient dopaminergic neurons. Furthermore, ectopic expression of ATF4 but not transcriptionally defective ATF4ΔRK restores sensitivity of ATF4-deficient neurons to PD neurotoxins. Finally, we demonstrate that the eIF2α kinase inhibitor C16 suppresses MPP+ and 6-OHDA induced ATF4 activation and protects against PD neurotoxin induced dopaminergic neuronal death. Taken together these results indicate that ATF4 promotes dopaminergic cell death induced by PD neurotoxins and pathogenic α-synuclein aggregates and highlight the ISR factor ATF4 as a potential therapeutic target in PD.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Neurotoxinas/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Parkinson/mortalidad , Análisis de Supervivencia
3.
Cell Immunol ; 332: 7-23, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30017085

RESUMEN

In response to micro-environmental cues such as microbial infections or T-helper 1 and 2 (TH1 and TH2) cytokines, macrophages (Mϕs) develop into M1- or M2-like phenotypes. Phenotypic polarization/activation of Mϕs are also essentially regulated by autocrine signals. Type-A γ-aminobutyric acid receptor (GABAAR)-mediated autocrine signaling is critical for phenotypic differentiation and transformation of various cell types. The present study explored whether GABAAR signaling regulates lung Mϕ (LMϕ) phenotypic activation under M1/TH1 and M2/TH2 environments. Results showed that GABAAR subunits were expressed by primary LMϕ of mice and the mouse Mϕ cell line RAW264.7. The expression levels of GABAAR subunits in mouse LMϕs and RAW264.7 cells decreased or increased concurrently with classical (M1) or alternative (M2) activation, respectively. Moreover, activation or blockade of GABAARs distinctively influenced the phenotypic characteristics of Mϕ. These results suggested that microenvironments leading to LMϕ phenotypic polarization concurrently modulates autocrine GABA signaling and its role in Mϕ activation.


Asunto(s)
Comunicación Autocrina/fisiología , Activación de Macrófagos/fisiología , Macrófagos Alveolares/metabolismo , Transducción de Señal/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Células RAW 264.7 , Receptores de GABA/metabolismo , Células TH1/metabolismo , Células Th2/metabolismo
5.
Mol Biol Cell ; 28(18): 2347-2359, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701342

RESUMEN

Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3-/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC.


Asunto(s)
Células Acinares/metabolismo , Factor de Transcripción Activador 3/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Células Acinares/citología , Factor de Transcripción Activador 3/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Diferenciación Celular/fisiología , Ceruletida , Regulación hacia Abajo , Masculino , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Fenotipo , Neoplasias Pancreáticas
6.
J Biol Chem ; 291(34): 17602-15, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27358397

RESUMEN

Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca(2+) signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity.


Asunto(s)
Señalización del Calcio/fisiología , Endocitosis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Células HEK293 , Humanos , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico/genética
7.
Mol Brain ; 8: 41, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26170135

RESUMEN

Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aß) peptides in the brain. Aß peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the ß - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aß40 and Aß42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aß production and that altering APP trafficking represents a viable strategy to reduce Aß production.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Péptidos beta-Amiloides/biosíntesis , Lisosomas/metabolismo , Pinocitosis , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP , Actinas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Compartimento Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Supervivencia Celular , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/metabolismo , Dextranos/metabolismo , Endosomas/metabolismo , Endosomas/ultraestructura , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Proteínas Mutantes/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Proteína de Unión al GTP rac1/metabolismo
8.
Nat Commun ; 6: 6761, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25854456

RESUMEN

How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked.


Asunto(s)
Sinapsis Eléctricas/metabolismo , Lóbulo Frontal/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Maleato de Dizocilpina/farmacología , Sinapsis Eléctricas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Lóbulo Frontal/efectos de los fármacos , Regulación de la Expresión Génica , Glutatión/efectos de los fármacos , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Transferasa/efectos de los fármacos , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/genética
9.
Expert Opin Ther Targets ; 18(11): 1293-304, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25118797

RESUMEN

INTRODUCTION: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein, which underlies the loss of striatal and cortical neurons. Glutamate has been implicated in a number of neurodegenerative diseases, and several studies suggest that the metabotropic glutamate receptor 5 (mGluR5) may represent a target for the treatment of HD. AREAS COVERED: The main goal of this review is to discuss the current data in the literature regarding the role of mGluR5 in HD and evaluate the potential of mGluR5 as a therapeutic target for the treatment of HD. mGluR5 is highly expressed in the brain regions affected in HD and is involved in movement control. Moreover, mGluR5 interacts with htt and mutated htt profoundly affects mGluR5 signaling. However, mGluR5 stimulation can activate both neuroprotective and neurotoxic signaling pathways, depending on the context of activation. EXPERT OPINION: Although the data published so far strongly indicate that mGluR5 plays a major role in HD-associated neurodegeneration, htt aggregation and motor symptoms, it is not clear whether mGluR5 stimulation can diminish or intensify neuronal cell loss and HD progression. Thus, future experiments will be necessary to further investigate the outcome of drugs acting on mGluR5 for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Terapia Molecular Dirigida , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Animales , Encéfalo/fisiopatología , Diseño de Fármacos , Ácido Glutámico/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Mol Brain ; 7: 40, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24886239

RESUMEN

BACKGROUND: Alzheimer's disease (AD) pathology occurs in part as the result of excessive production of ß-amyloid (Aß). Metabotropic glutamate receptor 5 (mGluR5) is now considered a receptor for Aß and consequently contributes to pathogenic Aß signaling in AD. RESULTS: Genetic deletion of mGluR5 rescues the spatial learning deficits observed in APPswe/PS1ΔE9 AD mice. Moreover, both Aß oligomer formation and Aß plaque number are reduced in APPswe/PS1ΔE9 mice lacking mGluR5 expression. In addition to the observed increase in Aß oligomers and plaques in APPswe/PS1ΔE9 mice, we found that both mTOR phosphorylation and fragile X mental retardation protein (FMRP) expression were increased in these mice. Genetic deletion of mGluR5 reduced Aß oligomers, plaques, mTOR phosphorylation and FMRP expression in APPswe/PS1ΔE9 mice. CONCLUSIONS: Thus, we propose that Aß activation of mGluR5 appears to initiate a positive feedback loop resulting in increased Aß formation and AD pathology in APPswe/PS1ΔE9 mice via mechanism that is regulated by FMRP.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Receptor del Glutamato Metabotropico 5/deficiencia , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Membrana Celular/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Eliminación de Gen , Humanos , Fosfatos de Inositol/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Actividad Motora , Fenotipo , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
Nat Commun ; 5: 3550, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686499

RESUMEN

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.


Asunto(s)
Acidosis/metabolismo , Acidosis/fisiopatología , Mitocondrias/metabolismo , Oxígeno/metabolismo , Acidosis/genética , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Mitosis , Fosforilación Oxidativa
12.
Hum Mol Genet ; 23(8): 2030-42, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24282028

RESUMEN

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin protein, which promotes progressive neuronal cell loss, neurological symptoms and death. In the present study, we show that blockade of mGluR5 with MTEP promotes increased locomotor activity in both control (Hdh(Q20/Q20)) and mutant HD (Hdh(Q111/Q111)) mice. Although acute injection of MTEP increases locomotor activity in both control and mutant HD mice, locomotor activity is increased in only control mice, not mutant HD mice, following the genetic deletion of mGluR5. Interestingly, treatment of mGluR5 knockout mice with either D1 or D2 dopamine antagonists eliminates the increased locomotor activity of mGluR5 knockout mice. Amphetamine treatment increases locomotor activity in control mice, but not mGluR5 null mutant HD mice. However, the loss of mGluR5 expression improves rotarod performance and decreases the number of huntingtin intranuclear inclusions in mutant HD mice. These adaptations may be due to mutant huntingtin-dependent alterations in gene expression, as microarray studies have identified several genes that are altered in mutant, but not wild-type HD mice lacking mGluR5 expression. qPCR experiments confirm that the mRNA transcript levels of dynein heavy chain, dynactin 3 and dynein light chain-6 are altered following the genetic deletion of mGluR5 in mutant HD mice, as compared with wild-type mutant HD mice. Thus, our data suggest that mutant huntingtin protein and mGluR5 exhibit a functional interaction that may be important for HD-mediated alterations in locomotor behavior and the development of intranuclear inclusions.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Cuerpos de Inclusión Intranucleares/patología , Actividad Motora/fisiología , Receptor del Glutamato Metabotropico 5/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Técnicas para Inmunoenzimas , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Piridinas/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiazoles/farmacología
13.
Mol Cell ; 50(4): 565-76, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706821

RESUMEN

Although Numb exhibits its tumor-suppressive function in breast cancer in part by binding to and stabilizing p53, it is unknown how the Numb-p53 interaction is regulated in cells. We found that Numb is methylated in its phosphotyrosine-binding (PTB) domain by the lysine methyltransferase Set8. Moreover, methylation uncouples Numb from p53, resulting in increased p53 ubiquitination and degradation. While Numb promotes apoptosis in a p53-dependent manner, the apoptotic function is abolished when Numb is methylated by Set8 or the Lys methylation sites in Numb are mutated. Conversely, the Numb-p53 interaction and Numb-mediated apoptosis are significantly enhanced by depletion of Set8 from cancer cells or by treating the cells with doxorubicin, a chemotherapeutic drug that causes a reduction in the mRNA and protein levels of Set8. Our work identifies the Set8-Numb-p53 signaling axis as an important regulatory pathway for apoptosis and suggests a therapeutic strategy by targeting Numb methylation.


Asunto(s)
Apoptosis/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sitios de Unión/genética , Línea Celular , Línea Celular Tumoral , Doxorrubicina/farmacología , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Metilación , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/genética , Unión Proteica , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética
14.
Mol Brain ; 6: 9, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23406666

RESUMEN

BACKGROUND: Group I metabotropic glutamate receptors (mGluR) are coupled via Gαq/11 to the activation of phospholipase Cß, which hydrolyzes membrane phospholipids to form inositol 1,4,5 trisphosphate and diacylglycerol. In addition to functioning as neurotransmitter receptors to modulate synaptic activity, pathological mGluR5 signaling has been implicated in a number of disease processes including Fragile X, amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, and drug addiction. The expression of mGluR5 in astrocytes has been shown to be increased in several acute and chronic neurodegenerative conditions, but little is known about the functional relevance of mGluR5 up-regulation in astrocytes following injury. RESULTS: In the current study, we investigated primary mouse cortical astrocyte cell death in response to oxygen glucose deprivation (OGD) and found that OGD induced both necrotic and apoptotic cell death of astrocytes. OGD resulted in an increase in astrocytic mGluR5 protein expression, inositol phosphate formation and extracellular regulated kinase (ERK1/2) phosphorylation, but only inositol phosphate formation was blocked with the mGluR5 selective antagonist MPEP. Cortical astrocytes derived from mGluR5 knockout mice exhibited resistance to OGD-stimulated apoptosis, but a lack of mGluR5 expression did not confer protection against necrotic cell death. The antagonism of the inositol 1,4,5 trisphosphate receptor also reduced apoptotic cell death in wild-type astrocytes, but did not provide any additional protection to astrocytes derived from mGluR5 null mice. Moreover, the disruption of Homer protein interactions with mGluR5 also reduced astrocyte apoptosis. CONCLUSION: Taken together these observations indicated that mGluR5 up-regulation contributed selectively to the apoptosis of astrocytes via the activation of phospholipase C and the release of calcium from intracellular stores as well as via the association with Homer proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Portadoras/metabolismo , Glucosa/deficiencia , Oxígeno/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Animales , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Astrocitos/patología , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/farmacología , Proteínas de Andamiaje Homer , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Ratones , Necrosis , Fosforilación/efectos de los fármacos , Receptor del Glutamato Metabotropico 5
15.
PLoS One ; 7(10): e46885, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056511

RESUMEN

The AKT, GSK3 and JNK family kinases have been implicated in neuronal apoptosis associated with neuronal development and several neurodegenerative conditions. However, the mechanisms by which these kinase pathways regulate apoptosis remain unclear. In this study we have investigated the role of these kinases in neuronal cell death using an established model of trophic factor deprivation induced apoptosis in cerebellar granule neurons. BCL-2 family proteins are known to be central regulators of apoptosis and we have determined that the pro-apoptotic family member Puma is transcriptionally up-regulated in trophic factor deprived neurons and that Puma induction is required for apoptosis in vitro and in vivo. Importantly, we demonstrate that Puma induction is dependent on both JNK activation and AKT inactivation. AKT is known to regulate a number of downstream pathways, however we have determined that PI3K-AKT inactivation induces Puma expression through a GSK3ß-dependent mechanism. Finally we demonstrate that the JNK and AKT/GSK3ß pathways converge to regulate FoxO3a-mediated transcriptional activation of Puma. In summary we have identified a novel and critical link between the AKT, GSK3ß and JNK kinases and the regulation of Puma induction and suggest that this may be pivotal to the regulation of neuronal apoptosis in neurodegenerative conditions.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis , Glucógeno Sintasa Quinasa 3/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Animales , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Neuronas/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética , Activación Transcripcional
16.
J Neurosci ; 30(50): 16938-48, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159964

RESUMEN

An increasing body of evidence points to a key role of endoplasmic reticulum (ER) stress in acute and chronic neurodegenerative conditions. Extensive ER stress can trigger neuronal apoptosis, but the signaling pathways that regulate this cell death remain unclear. In the present study, we demonstrate that PUMA, a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family, is transcriptionally activated in cortical neurons by ER stress and is essential for ER-stress-induced cell death. PUMA is known to be a key transcriptional target of p53, but we have found that ER stress triggers PUMA induction and cell death through a p53-independent mechanism mediated by the ER-stress-inducible transcription factor ATF4 (activating transcription factor 4). Specifically, we demonstrate that ectopic expression of ATF4 sensitizes mouse cortical neurons to ER-stress-induced apoptosis and that ATF4-deficient neurons exhibit markedly reduced levels of PUMA expression and cell death. However, chromatin immunoprecipitation experiments suggest that ATF4 does not directly regulate the PUMA promoter. Rather, we found that ATF4 induces expression of the transcription factor CHOP (C/EBP homologous protein) and that CHOP in turn activates PUMA induction. Specifically, we demonstrate that CHOP binds to the PUMA promoter during ER stress and that CHOP knockdown attenuates PUMA induction and neuronal apoptosis. In summary, we have identified a key signaling pathway in ER-stress-induced neuronal death involving ATF4-CHOP-mediated transactivation of the proapoptotic Bcl-2 family member PUMA. We propose that this pathway may be an important therapeutic target relevant to a number of neurodegenerative conditions.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/genética , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estrés Fisiológico/genética , Factor de Transcripción CHOP/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Técnicas de Cultivo de Célula , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico/fisiología , Tapsigargina/farmacología , Factor de Transcripción CHOP/genética , Transfección/métodos , Proteínas Supresoras de Tumor/genética , Tunicamicina/farmacología
17.
CNS Neurol Disord Drug Targets ; 9(5): 574-95, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20632969

RESUMEN

Stimulation of Group I metabotropic glutamate receptors (mGluR1 and mGluR5) leads to activation of a wide variety of signalling pathways. mGluRs couple to Gα(q/)11 proteins, activating phospholipase Cß1 resulting in both diacylglycerol and inositol-1,4,5-triphosphate formation followed by the activation of protein kinase C. In addition, mGluR activation can lead to modulation of a number of ion channels, such as different types of calcium and potassium channels. Group I mGluRs can also activate other downstream protein kinases, such as ERK1/2 and AKT, which are implicated in cellular growth, differentiation, and survival. Moreover, Group I mGluRs interact with a variety of different proteins that are important for the regulation of synaptic signalling, such as Homer and PDZ domain containing proteins, such as Tamalin. A role for mGluR1/5 in a number of disease states has also been proposed. As mGluR1/5 signal transduction is complex and involves multiple partners, a better understanding of alterations in mGluR signalling in brain disorders will be required in order to discern the molecular and cellular basis of these pathologies. This review will highlight recent findings concerning mGluR signaling alterations in brain pathologies, such as stroke, fragile X syndrome, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, and drug addiction.


Asunto(s)
Encefalopatías/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Animales , Humanos , Modelos Biológicos , Enfermedades del Sistema Nervioso/fisiopatología , Receptor del Glutamato Metabotropico 5 , Transducción de Señal/fisiología
18.
Mol Brain ; 3: 11, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20409323

RESUMEN

BACKGROUND: A central feature of Alzheimer's disease is the cleavage of the amyloid precursor protein (APP) to form beta-amyloid peptide (Abeta) by the beta-secretase and gamma-secretase enzymes. Although this has been shown to occur after endocytosis of APP from the cell surface, the exact compartments of APP processing are not well defined. We have previously demonstrated that APP and gamma-secretase proteins and activity are highly enriched in purified rat liver lysosomes. In order to examine the lysosomal distribution and trafficking of APP in cultured cells, we generated constructs containing APP fused to a C-terminal fluorescent protein tag and N-terminal HA-epitope tag. These were co-transfected with a panel of fluorescent-protein tagged compartment markers. RESULTS: Here we demonstrate using laser-scanning confocal microscopy that although APP is present throughout the endosomal/lysosomal system in transfected Cos7 and neuronal SN56 cell lines as well as in immunostained cultured mouse neurons, it is enriched in the lysosome. We also show that the Swedish and London mutations reduce the amount of APP in the lysosome. Surprisingly, in addition to its expected trafficking from the cell surface to the early and then late endosomes, we find that cell-surface labelled APP is transported rapidly and directly from the cell surface to lysosomes in both Cos7 and SN56 cells. This rapid transit to the lysosome is blocked by the presence of either the London or Swedish mutations. CONCLUSIONS: These results demonstrate the presence of a novel, rapid and specific transport pathway from the cell surface to the lysosomes. This suggests that regulation of lysosomal traffic could regulate APP processing and that the lysosome could play a central role in the pathophysiology of Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Lisosomas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Transporte Biológico/fisiología , Células COS , Células Cultivadas , Chlorocebus aethiops , Humanos , Ratones , Mutación , Neuronas/citología , Neuronas/metabolismo , Ratas
19.
J Neurosci ; 30(11): 3973-82, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20237268

RESUMEN

Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis/fisiología , Neuronas/patología , Neuronas/fisiología , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Daño del ADN/genética , Activación Enzimática/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Neuronas/enzimología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Células PC12 , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Factores de Transcripción
20.
J Neurosci ; 30(1): 316-24, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20053912

RESUMEN

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (Htt). Group I metabotropic glutamate receptors (mGluRs) are coupled to G(alphaq) and play an important role in neuronal survival. We have previously demonstrated that mGluRs interact with Htt. Here we used striatal neuronal primary cultures and acute striatal slices to demonstrate that mGluR-mediated signaling pathways are altered in a presymptomatic mouse model of HD (Hdh(Q111/Q111)), as compared to those of control mice (Hdh(Q20/Q20)). mGluR1/5-mediated inositol phosphate (InsP) formation is desensitized in striatal slices from Hdh(Q111/Q111) mice and this desensitization is PKC-mediated. Despite of decreased InsP formation, (S)-3,5-dihydroxylphenylglycine (DHPG)-mediated Ca(2+) release is higher in Hdh(Q111/Q111) than in Hdh(Q20/Q20) neurons. Furthermore, mGluR1/5-stimulated AKT and extracellular signal-regulated kinase (ERK) activation is altered in Hdh(Q111/Q111) mice. Basal AKT activation is higher in Hdh(Q111/Q111) neurons and this increase is mGluR5 dependent. Moreover, mGluR5 activation leads to higher levels of ERK activation in Hdh(Q111/Q111) than in Hdh(Q20/Q20) striatum. PKC inhibition not only brings Hdh(Q111/Q111) DHPG-stimulated InsP formation to Hdh(Q20/Q20) levels, but also causes an increase in neuronal cell death in Hdh(Q111/Q111) neurons. However, PKC inhibition does not modify neuronal cell death in Hdh(Q20/Q20) neurons, suggesting that PKC-mediated desensitization of mGluR1/5 in Hdh(Q111/Q111) mice might be protective in HD. Together, these data indicate that group I mGluR-mediated signaling pathways are altered in HD and that these cell signaling adaptations could be important for striatal neurons survival.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA