Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477653

RESUMEN

We present a compact closed-loop recycling system for noble and inert gases. It has been developed for an extreme-ultraviolet (XUV) frequency comb based on high-harmonic generation at 100 MHz repetition rate. The system collects gas injected at several bars of backing pressure through a micrometer-sized nozzle into the laser-interaction region with a differential pumping system comprising turbomolecular pumps, and subsequently compresses the gas to a pressure of up to 200 bar. By drastically reducing the waste of expensive gases such as xenon and krypton, it enables the long operation times needed for spectroscopic measurements, as well as for continuous operation of the XUV frequency comb.

2.
Nature ; 622(7981): 53-57, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794267

RESUMEN

Inner-shell electrons naturally sense the electric field close to the nucleus, which can reach extreme values beyond 1015 V cm-1 for the innermost electrons1. Especially in few-electron, highly charged ions, the interaction with the electromagnetic fields can be accurately calculated within quantum electrodynamics (QED), rendering these ions good candidates to test the validity of QED in strong fields. Consequently, their Lamb shifts were intensively studied in the past several decades2,3. Another approach is the measurement of gyromagnetic factors (g factors) in highly charged ions4-7. However, so far, either experimental accuracy or small field strength in low-Z ions5,6 limited the stringency of these QED tests. Here we report on our high-precision, high-field test of QED in hydrogen-like 118Sn49+. The highly charged ions were produced with the Heidelberg electron beam ion trap (EBIT)8 and injected into the ALPHATRAP Penning-trap setup9, in which the bound-electron g factor was measured with a precision of 0.5 parts per billion (ppb). For comparison, we present state-of-the-art theory calculations, which together test the underlying QED to about 0.012%, yielding a stringent test in the strong-field regime. With this measurement, we challenge the best tests by means of the Lamb shift and, with anticipated advances in the g-factor theory, surpass them by more than an order of magnitude.

3.
Rev Sci Instrum ; 92(8): 083203, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470420

RESUMEN

We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of Q ≈ 2.3 × 105 at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts that limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron-beam ion trap, and deceleration beamline supplying highly charged ions (HCIs), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole-mass filter with HCIs and trapping of Doppler-cooled 9Be+ Coulomb crystals.

4.
Opt Express ; 29(2): 2624-2636, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726454

RESUMEN

We have developed an extreme ultraviolet (XUV) frequency comb for performing ultra-high precision spectroscopy on the many XUV transitions found in highly charged ions (HCI). Femtosecond pulses from a 100 MHz phase-stabilized near-infrared frequency comb are amplified and then fed into a femtosecond enhancement cavity (fsEC) inside an ultra-high vacuum chamber. The low-dispersion fsEC coherently superposes several hundred incident pulses and, with a single cylindrical optical element, fully compensates astigmatism at the w0 = 15 µm waist cavity focus. With a gas jet installed there, intensities reaching ∼ 1014 W/cm2 generate coherent high harmonics with a comb spectrum at 100 MHz rate. We couple out of the fsEC harmonics from the 7th up to the 35th (42 eV; 30 nm) to be used in upcoming experiments on HCI frequency metrology.

5.
Nature ; 581(7806): 42-46, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376960

RESUMEN

State-of-the-art optical clocks1 achieve precisions of 10-18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10-11-an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10-8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6.

6.
Opt Lett ; 45(8): 2156-2159, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287180

RESUMEN

We raise the power from a commercial 10 W frequency comb inside an enhancement cavity and perform multi-photon ionization of gas-phase atoms at 100 MHz for the first time, to the best of our knowledge. An intra-cavity velocity-map-imaging setup collects electron-energy spectra of xenon at rates several orders of magnitude higher than those of conventional laser systems. Consequently, we can use much lower intensities ${\sim}{{10}^{12}} \;{\rm W}/{{\rm cm}^2} $∼1012W/cm2 without increasing acquisition times above just a few seconds. The high rate and coherence of the stabilized femtosecond pulses are known to be transferred to the actively stabilized cavity and will allow studying purely perturbative multi-photon effects, paving the road towards a new field of precision tests in nonlinear physics.

7.
Nature ; 578(7793): 60-65, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31996851

RESUMEN

Precision spectroscopy of atomic systems1 is an invaluable tool for the study of fundamental interactions and symmetries2. Recently, highly charged ions have been proposed to enable sensitive tests of physics beyond the standard model2-5 and the realization of high-accuracy atomic clocks3,5, owing to their high sensitivity to fundamental physics and insensitivity to external perturbations, which result from the high binding energies of their outer electrons. However, the implementation of these ideas has been hindered by the low spectroscopic accuracies (of the order of parts per million) achieved so far6-8. Here we cool trapped, highly charged argon ions to the lowest temperature reported so far, and study them using coherent laser spectroscopy, achieving an increase in precision of eight orders of magnitude. We use quantum logic spectroscopy9,10 to probe the forbidden optical transition in 40Ar13+ at a wavelength of 441 nanometres and measure its excited-state lifetime and g-factor. Our work unlocks the potential of highly charged ions as ubiquitous atomic systems for use in quantum information processing, as frequency standards and in highly sensitive tests of fundamental physics, such as searches for dark-matter candidates11 or violations of fundamental symmetries2.

8.
Phys Rev Lett ; 125(24): 243001, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33412031

RESUMEN

We demonstrate a widely applicable technique to absolutely calibrate the energy scale of x-ray spectra with experimentally well-known and accurately calculable transitions of highly charged ions, allowing us to measure the K-shell Rydberg spectrum of molecular O_{2} with 8 meV uncertainty. We reveal a systematic ∼450 meV shift from previous literature values, and settle an extraordinary discrepancy between astrophysical and laboratory measurements of neutral atomic oxygen, the latter being calibrated against the aforementioned O_{2} literature values. Because of the widespread use of such, now deprecated, references, our method impacts on many branches of x-ray absorption spectroscopy. Moreover, it potentially reduces absolute uncertainties there to below the meV level.

9.
Nat Commun ; 10(1): 5651, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827086

RESUMEN

Recent theoretical works have proposed atomic clocks based on narrow optical transitions in highly charged ions. The most interesting candidates for searches of physics beyond the Standard Model are those which occur at rare orbital crossings where the shell structure of the periodic table is reordered. There are only three such crossings expected to be accessible in highly charged ions, and hitherto none have been observed as both experiment and theory have proven difficult. In this work we observe an orbital crossing in a system chosen to be tractable from both sides: Pr[Formula: see text]. We present electron beam ion trap measurements of its spectra, including the inter-configuration lines that reveal the sought-after crossing. With state-of-the-art calculations we show that the proposed nHz-wide clock line has a very high sensitivity to variation of the fine-structure constant, [Formula: see text], and violation of local Lorentz invariance; and has extremely low sensitivity to external perturbations.

10.
Phys Rev Lett ; 123(2): 023201, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386513

RESUMEN

We present a comprehensive experimental and theoretical study on superfluorescence in the extreme ultraviolet wavelength regime. Focusing a free-electron laser pulse in a cell filled with Xe gas, the medium is quasi-instantaneously population inverted by 4d-shell ionization on the giant resonance followed by Auger decay. On the timescale of ∼10 ps to ∼100 ps (depending on parameters) a macroscopic polarization builds up in the medium, resulting in superfluorescent emission of several Xe lines in the forward direction. As the number of emitters in the system is increased by either raising the pressure or the pump-pulse energy, the emission yield grows exponentially over four orders of magnitude and reaches saturation. With increasing yield, we observe line broadening, a manifestation of superfluorescence in the spectral domain. Our novel theoretical approach, based on a full quantum treatment of the atomic system and the irradiated field, shows quantitative agreement with the experiment and supports our interpretation.

11.
Rev Sci Instrum ; 90(7): 073201, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31370455

RESUMEN

A cryogenic radio-frequency ion trap system designed for quantum logic spectroscopy of highly charged ions (HCI) is presented. It includes a segmented linear Paul trap, an in-vacuum imaging lens, and a helical resonator. We demonstrate ground state cooling of all three modes of motion of a single 9Be+ ion and determine their heating rates as well as excess axial micromotion. The trap shows one of the lowest levels of electric field noise published to date. We investigate the magnetic-field noise suppression in cryogenic shields made from segmented copper, the resulting magnetic field stability at the ion position and the resulting coherence time. Using this trap in conjunction with an electron beam ion trap and a deceleration beamline, we have been able to trap single highly charged Ar13+ (Ar XIV) ions concurrently with single Be+ ions, a key prerequisite for the first quantum logic spectroscopy of a HCI. This major stepping stone allows us to push highly-charged-ion spectroscopic precision from the gigahertz to the hertz level and below.

12.
Rev Sci Instrum ; 90(6): 065104, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31254988

RESUMEN

In vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times, for example, in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. At the experimental chamber, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 10-15 mbar level is achieved. In collaboration with the Max-Planck-Institut für Kernphysik, such a setup is now in operation at the Physikalisch-Technische Bundesanstalt for a next-generation optical clock experiment using highly charged ions.

13.
Rev Sci Instrum ; 90(12): 123201, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31893798

RESUMEN

This paper reports on the development and testing of a novel, highly efficient technique for the injection of very rare species into electron beam ion traps (EBITs) for the production of highly charged ions (HCI). It relies on in-trap laser-induced desorption of atoms from a sample brought very close to the electron beam resulting in a very high capture efficiency in the EBIT. We have demonstrated a steady production of HCI of the stable isotope 165Ho from samples of only 1012 atoms (∼300 pg) in charge states up to 45+. HCI of these species can be subsequently extracted for use in other experiments or stored in the trapping volume of the EBIT for spectroscopic measurements. The high efficiency of this technique extends the range of rare isotope HCIs available for high-precision atomic mass and spectroscopic measurements. A first application of this technique is the production of HCI of the synthetic radioisotope 163Ho for a high-precision measurement of the QEC-value of the electron capture in 163Ho within the "Electron Capture in Holmium" experiment [L. Gastaldo et al., J. Low Temp. Phys. 176, 876-884 (2014); L. Gastaldo et al., Eur. Phys. J.: Spec. Top. 226, 1623-1694 (2017)] (ECHo collaboration) ultimately leading to a measurement of the electron neutrino mass with an uncertainty on the sub electronvolt level.

14.
Rev Sci Instrum ; 89(6): 063109, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960545

RESUMEN

Electron beam ion traps (EBITs) are ideal tools for both production and study of highly charged ions (HCIs). In order to reduce their construction, maintenance, and operation costs, we have developed a novel, compact, room-temperature design, the Heidelberg Compact EBIT (HC-EBIT). Four already commissioned devices operate at the strongest fields (up to 0.86 T) reported for such EBITs using permanent magnets, run electron beam currents up to 80 mA, and energies up to 10 keV. They demonstrate HCI production, trapping, and extraction of pulsed Ar16+ bunches and continuous 100 pA ion beams of highly charged Xe up to charge state 29+, already with a 4 mA, 2 keV electron beam. Moreover, HC-EBITs offer large solid-angle ports and thus high photon count rates, e.g., in x-ray spectroscopy of dielectronic recombination in HCIs up to Fe24+, achieving an electron-energy resolving power of E/ΔE > 1500 at 5 keV. Besides traditional on-axis electron guns, we have also implemented a novel off-axis gun for laser, synchrotron, and free-electron laser applications, offering clear optical access along the trap axis. We report on its first operation at a synchrotron radiation facility demonstrating the resonant photoexcitation of highly charged oxygen.

15.
Rev Sci Instrum ; 89(5): 052401, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864823

RESUMEN

Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

16.
Phys Rev Lett ; 114(15): 150801, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933300

RESUMEN

We measure optical spectra of Nd-like W, Re, Os, Ir, and Pt ions of particular interest for studies of a possibly varying fine-structure constant. Exploiting characteristic energy scalings we identify the strongest lines, confirm the predicted 5s-4f level crossing, and benchmark advanced calculations. We infer two possible values for optical M2/E3 and E1 transitions in Ir^{17+} that have the highest predicted sensitivity to a variation of the fine-structure constant among stable atomic systems. Furthermore, we determine the energies of proposed frequency standards in Hf^{12+} and W^{14+}.

17.
Phys Rev Lett ; 113(8): 082502, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192092

RESUMEN

In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, ^{124}In and ^{124}Cs) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ßß) decay.

18.
Phys Rev Lett ; 111(5): 053002, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952392

RESUMEN

We present a method to measure the decay rate of the first excited vibrational state of polar molecular ions that are part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the |ν = 1, J = 1)(X) towards the |ν = 0, J = 0)(X) level in MgH+ by saturated laser excitation of the |ν = 0, J = 2)(X)-|ν = 1, J = 1)(X) transition followed by state selective resonance enhanced two-photon dissociation out of the |ν = 0, J=2)(X) level. The experimentally observed rate of 6.32(0.69) s(-1) is in excellent agreement with the theory value of 6.13(0.03) s(-1) (this Letter). The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.

19.
Phys Rev Lett ; 111(10): 103002, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-25166661

RESUMEN

Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

20.
Rev Sci Instrum ; 83(2): 02A908, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380249

RESUMEN

The ReA reaccelerator is being added to the National Superconducting Cyclotron Laboratory (NSCL) fragmentation facility in order to provide exotic rare-isotope beams, not available at the Isotope Separation On-Line facilities, in the several-MeV/u energy range. The first stage of the NSCL reaccelerator complex, consisting of an EBIT charge breeder, a room-temperature radiofrequency quadrupole (RFQ) accelerator, and superconducting linear accelerator modules, has been completed and is being put into operation. Commissioning of the EBIT has started by extracting charge-bred residual gas ions, ions created from a Ne gas jet directed across the EBIT's electron beam and ions captured from an external test ion source. Charge-bred ions from the Ne gas jet have been extracted as a pulse and accelerated through the RFQ and the two cryomodules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...