Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906817

RESUMEN

Connexins are goal keepers of tissue homeostasis, including in the liver. As a result, they are frequently involved in disease. The current study was set up to investigate the effects of cholestatic disease on the production of connexin26, connexin32 and connexin43 in the liver. For this purpose, bile duct ligation, a well-known trigger of cholestatic liver injury, was applied to mice. In parallel, human hepatoma HepaRG cell cultures were exposed to cholestatic drugs and bile acids. Samples from both the in vivo and in vitro settings were subsequently subjected to assessment of mRNA and protein quantities as well as to in situ immunostaining. While the outcome of cholestasis on connexin26 and connexin43 varied among experimental settings, a more generalized repressing effect was seen for connexin32. This has also been observed in many other liver pathologies and could suggest a role for connexin32 as a robust biomarker of liver disease and toxicity.


Asunto(s)
Colestasis/fisiopatología , Conexinas/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Conductos Biliares/metabolismo , Células Cultivadas , Colestasis/metabolismo , Conexina 26/metabolismo , Conexina 43/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Proteína beta1 de Unión Comunicante
2.
Biomolecules ; 9(10)2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652629

RESUMEN

Adherens junctions, consisting of cadherins and catenins, are a group of cell-to-cell junctions that mediate mechanistic linkage between neighboring cells. By doing so, adherens junctions ensure direct intercellular contact and play an indispensable role in maintaining tissue architecture. Considering these critical functions, it is not surprising that adherens junctions are frequently involved in disease. In the present study, the effects of bile duct ligation-a surgical procedure to experimentally induce cholestatic and fibrotic liver pathology-on hepatic adherens junctions were investigated in mice. In essence, it was found that liver mRNA and protein levels of E-cadherin, ß-catenin and γ-catenin drastically increase following bile duct ligation. These results could suggest a cytoprotective role for hepatic adherens junctions following bile duct ligation.


Asunto(s)
Uniones Adherentes/química , Uniones Adherentes/metabolismo , Conductos Biliares/cirugía , Colestasis/metabolismo , Colestasis/cirugía , Cirrosis Hepática/metabolismo , Cirrosis Hepática/cirugía , Hígado/metabolismo , Animales , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Arch Toxicol ; 92(8): 2607-2627, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29987408

RESUMEN

Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. This chronic disease is characterized by excessive deposition of extracellular matrix components mainly due to transdifferentiation of quiescent hepatic stellate cell into myofibroblasts-like cells, which in turn is driven by cell death and inflammation. In the last few years, paracrine signaling through pannexin1 channels has emerged as a key player in the latter processes. The current study was set up to investigate the role of pannexin1 signaling in liver fibrosis. Wild-type and whole body pannexin1 knock-out mice were treated with carbon tetrachloride or subjected to bile duct ligation. Evaluation of the effects of pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, oxidative stress, inflammation and regenerative capacity. In parallel, to elucidate the molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. While pannexin1 knock-out mice treated with carbon tetrachloride displayed reduced collagen content, hepatic stellate cell activation, inflammation and hepatic regeneration, bile duct ligated counterparts showed increased hepatocellular injury and antioxidant enzyme activity with a predominant immune response. Gene expression profiling revealed a downregulation of fibrotic and immune responses in pannexin1 knock-out mice treated with carbon tetrachloride, whereas bile duct ligated pannexin1-deficient animals showed a pronounced inflammatory profile. This study shows for the first time an etiology-dependent role for pannexin1 signaling in experimental liver fibrosis.


Asunto(s)
Conexinas/genética , Cirrosis Hepática/etiología , Proteínas del Tejido Nervioso/genética , Animales , Conductos Biliares/cirugía , Tetracloruro de Carbono/toxicidad , Conexinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ligadura , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/genética , Transducción de Señal/genética
4.
Int J Mol Sci ; 19(3)2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29534516

RESUMEN

Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5'-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.


Asunto(s)
Carbenoxolona/uso terapéutico , Conexina 43/antagonistas & inhibidores , Cirrosis Hepática/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Carbenoxolona/administración & dosificación , Carbenoxolona/farmacología , Células Cultivadas , Conexina 43/administración & dosificación , Conexina 43/farmacología , Conexina 43/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacología , Superóxido Dismutasa/metabolismo , Tioacetamida/toxicidad
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 819-830, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29246445

RESUMEN

Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1-/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1-/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1-/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1-/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease.


Asunto(s)
Conexinas/genética , Citoprotección/genética , Eliminación de Gen , Hepatopatías/genética , Hígado/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedad Aguda , Animales , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Hígado/patología , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Sci Rep ; 7(1): 8268, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811572

RESUMEN

While gap junctions mediate intercellular communication and support liver homeostasis, connexin hemichannels are preferentially opened by pathological stimuli, including inflammation and oxidative stress. The latter are essential features of non-alcoholic steatohepatitis. In this study, it was investigated whether connexin32 and connexin43 hemichannels play a role in non-alcoholic steatohepatitis. Mice were fed a choline-deficient high-fat diet or normal diet for 8 weeks. Thereafter, TAT-Gap24 or TAT-Gap19, specific inhibitors of hemichannels composed of connexin32 and connexin43, respectively, were administered for 2 weeks. Subsequently, histopathological examination was carried out and various indicators of inflammation, liver damage and oxidative stress were tested. In addition, whole transcriptome microarray analysis of liver tissue was performed. Channel specificity of TAT-Gap24 and TAT-Gap19 was examined in vitro by fluorescence recovery after photobleaching analysis and measurement of extracellular release of adenosine triphosphate. TAT-Gap24 and TAT-Gap19 were shown to be hemichannel-specific in cultured primary hepatocytes. Diet-fed animals treated with TAT-Gap24 or TAT-Gap19 displayed decreased amounts of liver lipids and inflammatory markers, and augmented levels of superoxide dismutase, which was supported by the microarray results. These findings show the involvement of connexin32 and connexin43 hemichannels in non-alcoholic steatohepatitis and, simultaneously, suggest a role as potential drug targets in non-alcoholic steatohepatitis.


Asunto(s)
Conexinas/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Biomarcadores , Conexina 43/química , Conexina 43/farmacología , Conexinas/química , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Pruebas de Función Hepática , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Relación Estructura-Actividad , Transcriptoma
7.
Pharmacol Ther ; 180: 144-160, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28720428

RESUMEN

While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.


Asunto(s)
Conexinas/antagonistas & inhibidores , Animales , Anticuerpos/farmacología , Humanos , Péptidos/farmacología , Interferencia de ARN
8.
Toxicol Lett ; 278: 30-37, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28687253

RESUMEN

Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure.


Asunto(s)
Acetaminofén , Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Conexina 43/antagonistas & inhibidores , Conexinas/antagonistas & inhibidores , Hígado/efectos de los fármacos , Péptidos/farmacología , Adenosina Trifosfato/metabolismo , Alanina Transaminasa/sangre , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Conexina 43/metabolismo , Conexinas/metabolismo , Citocinas/sangre , Citoprotección , Modelos Animales de Enfermedad , Mediadores de Inflamación/sangre , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Proteína beta1 de Unión Comunicante
9.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 51-61, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27741412

RESUMEN

Pannexins form channels at the plasma membrane surface that establish a pathway for communication between the cytosol of individual cells and their extracellular environment. By doing so, pannexin signaling dictates several physiological functions, but equally underlies a number of pathological processes. Indeed, pannexin channels drive inflammation by assisting in the activation of inflammasomes, the release of pro-inflammatory cytokines, and the activation and migration of leukocytes. Furthermore, these cellular pores facilitate cell death, including apoptosis, pyroptosis and autophagy. The present paper reviews the roles of pannexin channels in inflammation and cell death. In a first part, a state-of-the-art overview of pannexin channel structure, regulation and function is provided. In a second part, the mechanisms behind their involvement in inflammation and cell death are discussed.


Asunto(s)
Conexinas/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Leucocitos/inmunología , Proteínas del Tejido Nervioso/inmunología , Animales , Muerte Celular/genética , Muerte Celular/inmunología , Membrana Celular/inmunología , Membrana Celular/metabolismo , Movimiento Celular , Conexinas/química , Conexinas/genética , Citocinas/biosíntesis , Citocinas/inmunología , Citosol/inmunología , Citosol/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/patología , Leucocitos/patología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Transducción de Señal
10.
Clin Exp Pharmacol Physiol ; 44(2): 197-206, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27859493

RESUMEN

Non-alcoholic steatohepatitis is a highly prevalent liver pathology featured by hepatocellular fat deposition and inflammation. Connexin32, which is the major building block of hepatocellular gap junctions, has a protective role in hepatocarcinogenesis and is downregulated in chronic liver diseases. However, the role of connexin32 in non-alcoholic steatohepatitis remains unclear. Connexin32-/- mice and their wild-type littermates were fed a choline-deficient high-fat diet. The manifestation of non-alcoholic steatohepatitis was evaluated based on a battery of clinically relevant read-outs, including histopathological examination, diverse indicators of inflammation and liver damage, in-depth lipid analysis, assessment of oxidative stress, insulin and glucose tolerance, liver regeneration and lipid-related biomarkers. Overall, more pronounced liver damage, inflammation and oxidative stress were observed in connexin32-/- mice compared to wild-type animals. No differences were found in insulin and glucose tolerance measurements and liver regeneration. However, two lipid-related genes, srebf1 and fabp3, were upregulated in Cx32-/- mice in comparison with wild-type animals. These findings suggest that connexin32-based signalling is not directly involved in steatosis as such, but rather in the sequelae of this process, which underlie progression of non-alcoholic steatohepatitis.


Asunto(s)
Conexinas/deficiencia , Citocinas/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Animales , Conexinas/genética , Citocinas/sangre , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Unión a Ácidos Grasos/genética , Uniones Comunicantes/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/sangre , Hígado/inmunología , Hígado/metabolismo , Hígado/ultraestructura , Regeneración Hepática , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Regulación hacia Arriba , Proteína beta1 de Unión Comunicante
11.
Arch Toxicol ; 91(5): 2245-2261, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27826632

RESUMEN

Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Conexinas/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Conexinas/genética , Conexinas/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Sobredosis de Droga/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neutrófilos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
12.
Crit Rev Biochem Mol Biol ; 51(6): 413-439, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27387655

RESUMEN

Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.


Asunto(s)
Conexinas/inmunología , Uniones Comunicantes/inmunología , Inflamación/inmunología , Animales , Comunicación Celular , Humanos , Transducción de Señal
13.
Toxicol Mech Methods ; 26(5): 362-370, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27268753

RESUMEN

OBJECTIVE: Liver fibrosis results from the perpetuation of the normal wound healing response to several types of injury. Despite the wealth of knowledge regarding the involvement of intracellular and extracellular signaling pathways in liver fibrogenesis, information about the role of intercellular communication mediated by gap junctions is scarce. METHODS: In this study, liver fibrosis was chemically induced by carbon tetrachloride in mice lacking connexin32, the major liver gap junction constituent. The manifestation of liver fibrosis was evaluated based on a series of read-outs, including collagen morphometric and mRNA analysis, oxidative stress, apoptotic, proliferative and inflammatory markers. RESULTS: More pronounced liver damage and enhanced collagen deposition were observed in connexin32 knockout mice compared to wild-type animals in experimentally triggered induced liver fibrosis. No differences between both groups were noticed in apoptotic signaling nor in inflammation markers. However, connexin32 deficient mice displayed decreased catalase activity and increased malondialdehyde levels. CONCLUSION: These findings could suggest that connexin32-based signaling mediates tissue resistance against liver damage by the modulation of the antioxidant capacity. In turn, this could point to a role for connexin32 signaling as a therapeutic target in the treatment of liver fibrosis.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Conexinas/deficiencia , Cirrosis Hepática Experimental/metabolismo , Hígado/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno/metabolismo , Conexinas/genética , Citocinas/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/etiología , Cirrosis Hepática Experimental/patología , Pruebas de Función Hepática , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína beta1 de Unión Comunicante
14.
Methods Mol Biol ; 1437: 1-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207283

RESUMEN

Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin RNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction, and data analysis.


Asunto(s)
Conexinas/metabolismo , Hígado/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Guías como Asunto , Humanos , Ratones , ARN/metabolismo
15.
Methods Mol Biol ; 1437: 55-70, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207286

RESUMEN

Immunohistochemistry (IHC) is a ubiquitous used technique to identify and analyze protein expression in the context of tissue and cell morphology. In the connexin research field, IHC is applied to identify the subcellular location of connexin proteins, as this can be directly linked to their functionality. The present chapter describes a protocol for fluorescent IHC to detect connexin proteins in tissues slices and cells, with slight modifications depending on the nature of biological sample, histological processing, and/or protein expression level. Basically, fluorescent IHC is a short, simple, and cost-effective technique, which allows the visualization of proteins based on fluorescent-labeled antibody-antigen recognition.


Asunto(s)
Conexinas/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Uniones Comunicantes/metabolismo , Histocitoquímica/métodos , Inmunohistoquímica/métodos , Animales , Técnica del Anticuerpo Fluorescente/economía , Humanos , Inmunohistoquímica/economía , Hígado/metabolismo , Ratones , Miocardio/metabolismo
16.
EXCLI J ; 15: 177-86, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065778

RESUMEN

Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets.

17.
Biochim Biophys Acta ; 1862(6): 1111-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26912412

RESUMEN

BACKGROUND AND AIMS: Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. METHODS: C57BL/6 mice were overdosed with 300mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. RESULTS: It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. CONCLUSION: These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity.


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Conexina 43/genética , Hígado/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Conexina 43/análisis , Conexina 43/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/análisis , ARN Mensajero/genética
18.
J Membr Biol ; 249(3): 199-213, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26914707

RESUMEN

Cellular and molecular mechanisms of wound healing, tissue repair, and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders.


Asunto(s)
Conexinas/genética , Conexinas/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Uniones Comunicantes/metabolismo , Animales , Comunicación Celular , Conexinas/química , Susceptibilidad a Enfermedades , Fibroblastos , Regulación de la Expresión Génica , Humanos , Hígado/metabolismo , Hígado/patología , Miocardio/metabolismo , Miocardio/patología , Especificidad de Órganos/genética , Transducción de Señal , Piel/metabolismo , Piel/patología , Cicatrización de Heridas
19.
Toxicol Mech Methods ; 26(2): 88-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26739117

RESUMEN

Connexin32 is the building block of hepatocellular gap junctions, which control direct intercellular communication and thereby act as goalkeepers of liver homeostasis. This study was set up to investigate whether connexin32 is involved in hepatotoxicity induced by the analgesic and antipyretic drug acetaminophen. To this end, whole body connexin32 knock-out mice were overdosed with acetaminophen followed by sampling at different time points within a 24-h time frame. Evaluation was done based upon a series of clinically and mechanistically relevant read-outs, including protein adduct formation, histopathological examination, measurement of alanine aminotransferase activity, cytokine production, levels of reduced and oxidized glutathione and hepatic protein amounts of proliferating cell nuclear antigen. In essence, it was found that genetic ablation of connexin32 has no influence on several key events in acetaminophen-induced hepatotoxicity, including cell death, inflammation or oxidative stress, yet it does affect production of protein adducts as well as proliferating cell nuclear antigen steady-state protein levels. This outcome is not in line with previous studies, which are contradicting on their own, as both amplification and alleviation of this toxicological process by connexin32 have been described. This could question the suitability of the currently available models and tools to investigate the role of connexin32 in acetaminophen-triggered hepatotoxicity.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Conexinas/metabolismo , Hígado/efectos de los fármacos , Acetaminofén/administración & dosificación , Acetaminofén/metabolismo , Alanina Transaminasa/sangre , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Conexinas/genética , Citocinas/sangre , Disulfuro de Glutatión/metabolismo , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteína beta1 de Unión Comunicante
20.
Methods Mol Biol ; 1250: 95-103, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26272136

RESUMEN

Fas-mediated apoptosis underlies a plethora of liver pathologies and toxicities. As a consequence, this process is a major research topic in the field of experimental and clinical hepatology. The present chapter describes the setup of an in vitro model of hepatocellular apoptotic cell death. In essence, this system consists of freshly isolated hepatocytes cultured in a monolayer configuration, which are exposed to a combination of Fas ligand and cycloheximide. This in vitro model has been characterized by using a set of well-acknowledged cell death markers. This experimental system allows the study of the entire course of Fas-mediated hepatocellular cell death, going from early apoptosis to secondary necrosis, and hence can serve a broad range of in vitro pharmaco-toxicological purposes.


Asunto(s)
Muerte Celular , Hepatocitos/metabolismo , Técnicas In Vitro , Receptor fas/metabolismo , Biomarcadores , Técnicas de Cultivo de Célula , Humanos , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...