Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(49): 10943-10950, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38035381

RESUMEN

We compute autoionization widths of various Rydberg states of neon and N2 by equation-of-motion coupled-cluster theory combined with complex scaling and complex basis functions. This represents the first time that complex-variable methods are applied to Rydberg states represented in Gaussian basis sets. A new computational protocol based on Kaufmann basis functions is designed to make these methods applicable to atomic and molecular Rydberg states. As a first step, we apply our protocol to the neon atom and compute widths of the 3s, 3p, 4p and 3d Rydberg states. We then proceed to compute the widths of the 3sσg, 3dσg, and 3dπg Rydberg states of N2, which belong to the Hopfield series. Our results demonstrate a decrease in the decay width for increasing angular momentum and principal quantum number within both Rydberg series.

2.
Phys Chem Chem Phys ; 25(8): 6153-6163, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36752122

RESUMEN

We have recently developed a method based on relativistic time-dependent density functional theory (TD-DFT) that allows the calculation of electronic spectra in solution (Creutzberg, Hedegård, J. Chem. Theory Comput.18, 2022, 3671). This method treats the solvent explicitly with a classical, polarizable embedding (PE) description. Furthermore, it employs the complex polarization propagator (CPP) formalism which allows calculations on complexes with a dense population of electronic states (such complexes are known to be problematic for conventional TD-DFT). Here, we employ this method to investigate both the dynamic and electronic effects of the solvent for the excited electronic states of trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] in aqueous solution. This complex decomposes into species harmful to cancer cells under light irradiation. Thus, understanding its photo-physical properties may lead to a more efficient method to battle cancer. We quantify the effect of the underlying structure and dynamics by classical molecular mechanics simulations, refined with a subsequent DFT or semi-empirical optimization on a cluster. Moreover, we quantify the effect of employing different methods to set up the solvated system, e.g., how sensitive the results are to the method used for the refinement, and how large a solvent shell that is required. The electronic solvent effect is always included through a PE potential.

3.
Dalton Trans ; 51(42): 16055-16064, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214101

RESUMEN

The inorganic platinum complexes currently in clinical use for cancer treatment have severe side effects, and complexes with fewer side effects are required. One option is to use complexes that are inactive until they are light-activated. Theoretical chemistry can contribute to the design of these complexes, but most current theoretical methods lack explicit treatment of relativistic effects (since the target complexes often contain heavy elements). In particular, spin-orbit coupling is required for accurate predictions of the complexes' photo-physical properties. In this perspective, we summarize relativistic methods developed in recent years that can contribute to our understanding of light-induced reactivity and thereby help predict new, suitable complexes.


Asunto(s)
Platino (Metal) , Teoría Cuántica , Platino (Metal)/química
4.
J Chem Theory Comput ; 18(6): 3671-3686, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35549262

RESUMEN

Explicit embedding methods combined with the complex polarization propagator (CPP) enable the modeling of spectroscopy for increasingly complex systems with a high density of states. We present the first derivation and implementation of the CPP in four- and exact-two-component (X2C) polarizable embedding (PE) frameworks. We denote the developed methods PE-4c-CPP and PE-X2C-CPP, respectively. We illustrate the methods by estimating the solvent effect on ultraviolet-visible (UV-vis) and X-ray atomic absorption (XAS) spectra of [Rh(H2O)6]3+ and [Ir(H2O)6]3+ immersed in aqueous solution. We moreover estimate solvent effects on UV-vis spectra of a platinum complex that can be photochemically activated (in water) to kill cancer cells. Our results clearly show that the inclusion of the environment is required: UV-vis and (to a lesser degree) XAS spectra can become qualitatively different from vacuum calculations. Comparison of PE-4c-CPP and PE-X2C-CPP methods shows that X2C essentially reproduces the solvent effect obtained with the 4c methods.


Asunto(s)
Agua , Solventes/química , Agua/química
5.
Phys Chem Chem Phys ; 22(46): 27013-27023, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33210700

RESUMEN

We report the first systematic investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2]. In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic (NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. As expected, large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. It is also shown that effective core potentials (ECPs) yield essentially similar results as all-electron SR calculations. Yet the underlying transitions can be strongly influenced by spin-orbit coupling, which is only present in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Antineoplásicos/efectos de la radiación , Complejos de Coordinación/efectos de la radiación , Teoría Funcional de la Densidad , Luz , Modelos Químicos , Platino (Metal)/química , Platino (Metal)/efectos de la radiación , Espectrofotometría , Estereoisomerismo
6.
Chem Sci ; 12(1): 352-362, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34163601

RESUMEN

Catalytic breakdown of polysaccharides can be achieved more efficiently by means of the enzymes lytic polysaccharide monooxygenases (LPMOs). However, the LPMO mechanism has remained controversial, preventing full exploitation of their potential. One of the controversies has centered around an active site tyrosine, present in most LPMO classes. Recent investigations have for the first time obtained direct (spectroscopic) evidence for the possibility of chemical modification of this tyrosine. However, the spectroscopic features obtained in the different investigations are remarkably different, with absorption maximum at 420 and 490 nm, respectively. In this paper we use density functional theory (DFT) in a QM/MM formulation to reconcile these (apparently) conflicting results. By modeling the spectroscopy as well as the underlying reaction mechanism we can show how formation of two isomers (both involving deprotonation of tyrosine) explains the difference in the observed spectroscopic features. Both isomers have a [TyrO-Cu-OH]+ moiety with the OH in either the cis- or trans-position to a deprotonated tyrosine. Although the cis-[TyrO-Cu-OH]+ moiety is well positioned for oxidation of the substrate, preliminary calculations with the substrate reveal that the reactivity is at best moderate, making a protective role of tyrosine more likely.

7.
J Chem Theory Comput ; 15(11): 5925-5964, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509407

RESUMEN

In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA