Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 1001086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341452

RESUMEN

Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.


Asunto(s)
Quimiotaxis , Receptores de Formil Péptido , Factores Quimiotácticos/metabolismo , Transducción de Señal , Actinas/metabolismo
2.
Front Cell Dev Biol ; 9: 679500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409027

RESUMEN

Dendritic cells (DCs) are considered the most potent antigen-presenting cells. DCs control the activation of T cells (TCs) in the lymph nodes. This process involves forming a specialized superstructure at the DC-TC contact zone called the immunological synapse (IS). For the sake of clarity, we call IS(DC) and IS(TC) the DC and TC sides of the IS, respectively. The IS(DC) and IS(TC) seem to organize as multicentric signaling hubs consisting of surface proteins, including adhesion and costimulatory molecules, associated with cytoplasmic components, which comprise cytoskeletal proteins and signaling molecules. Most of the studies on the IS have focused on the IS(TC), and the information on the IS(DC) is still sparse. However, the data available suggest that both IS sides are involved in the control of TC activation. The IS(DC) may govern activities of DCs that confer them the ability to activate the TCs. One key component of the IS(DC) is the actin cytoskeleton. Herein, we discuss experimental data that support the concept that actin polarized at the IS(DC) is essential to maintaining IS stability necessary to induce TC activation.

3.
Front Immunol ; 11: 528, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351499

RESUMEN

Chemotaxis is a molecular mechanism that confers leukocytes the ability to detect gradients of chemoattractants. Chemokine receptors are well-known regulators of chemotaxis in leukocytes; however, they can regulate several other activities in these cells. This information has been often neglected, probably due to the paramount role of chemotaxis in the immune system and in biology. Therefore, the experimental data available on the mechanisms used by chemokine receptors to regulate other functions of leukocytes is sparse. The results obtained in the study of the chemokine receptor CCR7 in dendritic cells (DCs) provide interesting information on this issue. CCR7 guides the DCs from the peripheral tissues to the lymph nodes, where these cells control T cell activation. CCR7 can regulate DC chemotaxis, survival, migratory speed, cytoarchitecture, and endocytosis. Biochemical and functional analyses show: first, that CCR7 uses in DCs the PI3K/Akt pathway to control survival, the MAPK pathway to control chemotaxis, and the RhoA pathways to regulate actin dynamics, which in turn controls migratory speed, cytoarchitecture, and endocytosis; second, that these three signaling pathways behave as modules with a high degree of independence; and third, that although each one of these routes can regulate several functions in different settings, CCR7 promotes in DCs a functional bias in each pathway. The data uncover an interesting mechanism used by CCR7 to regulate the DCs, entailing multifunctional signaling pathways organized in modules with biased functionality. A similar mechanism could be used by other chemoattractant receptors to regulate the functions of leukocytes.


Asunto(s)
Células Dendríticas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CCR7/metabolismo , Animales , Supervivencia Celular , Quimiotaxis , Humanos , Inmunomodulación , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo
4.
J Immunol ; 202(6): 1715-1723, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718295

RESUMEN

The immunological synapse (IS) is a superstructure formed during T cell activation at the zone of contact between T cells and dendritic cells (DCs). The IS includes specific molecular components in the T cell and DCs sides that may result in different functionality. Most of the studies on the IS have focused on the T cell side of this structure and, in contrast, the information available on the IS of DCs is sparse. Autophagy is a cellular process involved in the clearance of damaged proteins and organelles via lysosomal degradation. Mitophagy is the selective autophagy of damaged mitochondria. In this study, it is shown that IS formation induces clustering of mitochondria in the IS of DCs and partial depolarization of these organelles. At the IS of the DCs also accumulate autophagy and mitophagy markers, even when the kinase complex mTORC1, an inhibitor of the autophagy, is active. Together the results presented indicate that IS formation induces local clustering of mitochondria and mitophagy, which could be a homeostatic mechanism to control the quality of mitochondria in this region. The data underline the complexity of the regulatory mechanisms operating in the IS of DCs.


Asunto(s)
Células Dendríticas/metabolismo , Sinapsis Inmunológicas/metabolismo , Mitocondrias/metabolismo , Mitofagia/inmunología , Animales , Células Dendríticas/inmunología , Sinapsis Inmunológicas/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/inmunología
5.
Trends Immunol ; 38(12): 927-941, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28935522

RESUMEN

The word chemokine is a combination of the words chemotactic and cytokine, in other words cytokines that promote chemotaxis. Hence, the term chemokine receptor refers largely to the ability to regulate chemoattraction. However, these receptors can modulate additional leukocyte functions, as exemplified by the case of CCR7 which, apart from chemotaxis, regulates survival, migratory speed, endocytosis, differentiation and cytoarchitecture. We present evidence highlighting that multifunctionality is a common feature of chemokine receptors. Based on the activities that they regulate, we suggest that chemokine receptors can be classified into inflammatory (which control both inflammatory and homeostatic functions) and homeostatic families. The information accrued also suggests that the non-chemotactic functions controlled by chemokine receptors may contribute to optimizing leukocyte functioning under normal physiological conditions and during inflammation.


Asunto(s)
Quimiocinas/metabolismo , Inflamación/inmunología , Leucocitos/inmunología , Receptores de Quimiocina/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Quimiotaxis de Leucocito , Endocitosis , Homeostasis , Humanos , Inmunidad
6.
Brain ; 137(Pt 3): 806-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24430976

RESUMEN

Lafora progressive myoclonus epilepsy (Lafora disease) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. The vast majority of patients carry mutations in either the EPM2A or EPM2B genes, encoding laforin, a glucan phosphatase, and malin, an E3 ubiquitin ligase, respectively. Although the precise physiological role of these proteins is not fully understood, work in past years has established a link between glycogen synthesis, Lafora bodies formation and Lafora disease development. To determine the role of the phosphatase activity of laforin in disease development we generated two Epm2a(-/-) mouse lines expressing either wild-type laforin or a mutant (C265S) laforin lacking only the phosphatase activity. Our results demonstrate that expression of either transgene blocks formation of Lafora bodies and restores the impairment in macroautophagy, preventing the development of Lafora bodies in Epm2a(-/-) mice. These data indicate that the critical pathogenic process is the control of abnormal glycogen accumulation through intracellular proteolytic systems by the laforin-malin complex, and not glycogen dephosphorylation by laforin. Understanding which is the essential process leading to Lafora disease pathogenesis represents a critical conceptual advance that should facilitate development of appropriate therapeutics.


Asunto(s)
Fosfatasas de Especificidad Dual/deficiencia , Fosfatasas de Especificidad Dual/metabolismo , Enfermedad de Lafora/metabolismo , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Femenino , Enfermedad de Lafora/enzimología , Enfermedad de Lafora/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Fosforilación/genética , Proteínas Tirosina Fosfatasas no Receptoras
7.
Autophagy ; 8(4): 701-3, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22361617

RESUMEN

Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment.


Asunto(s)
Autofagia , Enfermedad de Lafora/etiología , Enfermedad de Lafora/patología , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Ratones , Ratones Noqueados , Modelos Biológicos , Ubiquitina-Proteína Ligasas/metabolismo
8.
Autophagy ; 6(7): 991-3, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20818165

RESUMEN

Lafora disease (LD) is a progressive, lethal, autosomal recessive, neurodegenerative disorder that manifests with myoclonus epilepsy. LD is characterized by the presence of intracellular inclusion bodies called Lafora bodies (LB), in brain, spinal cord and other tissues. More than 50 percent of LD is caused by mutations in EPM2A that encodes laforin. Here we review our recent findings that revealed that laforin regulates autophagy. We consider how autophagy compromise may predispose to LB formation and neurodegeneration in LD, and discuss future investigations suggested by our data.


Asunto(s)
Autofagia/fisiología , Enfermedad de Lafora/fisiopatología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ubiquitina-Proteína Ligasas
9.
Hum Mol Genet ; 17(5): 667-78, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18029386

RESUMEN

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.


Asunto(s)
Proteínas Portadoras/genética , Glucógeno/biosíntesis , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Quinasas Activadas por AMP , Adenoviridae/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares , Escherichia coli/genética , Glucógeno/análisis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Riñón/citología , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Estadística como Asunto , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas , Ubiquitinación
10.
Nat Neurosci ; 10(11): 1407-13, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952067

RESUMEN

Glycogen synthesis is normally absent in neurons. However, inclusion bodies resembling abnormal glycogen accumulate in several neurological diseases, particularly in progressive myoclonus epilepsy or Lafora disease. We show here that mouse neurons have the enzymatic machinery for synthesizing glycogen, but that it is suppressed by retention of muscle glycogen synthase (MGS) in the phosphorylated, inactive state. This suppression was further ensured by a complex of laforin and malin, which are the two proteins whose mutations cause Lafora disease. The laforin-malin complex caused proteasome-dependent degradation both of the adaptor protein targeting to glycogen, PTG, which brings protein phosphatase 1 to MGS for activation, and of MGS itself. Enforced expression of PTG led to glycogen deposition in neurons and caused apoptosis. Therefore, the malin-laforin complex ensures a blockade of neuronal glycogen synthesis even under intense glycogenic conditions. Here we explain the formation of polyglucosan inclusions in Lafora disease by demonstrating a crucial role for laforin and malin in glycogen synthesis.


Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica/fisiología , Glucógeno/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/fisiología , Proteínas Portadoras/farmacología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Humanos , Etiquetado Corte-Fin in Situ/métodos , Ratones , Mutación/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/farmacología , Interferencia de ARN/fisiología , Transfección , Tubulina (Proteína)/metabolismo , Ubiquitina-Proteína Ligasas
11.
Hum Mol Genet ; 12(23): 3161-71, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14532330

RESUMEN

Progressive myoclonus epilepsy of Lafora type (LD, MIM 254780) is a fatal autosomal recessive disorder characterized by the presence of progressive neurological deterioration, myoclonus, epilepsy and polyglucosan intracellular inclusion bodies, called Lafora bodies. Lafora bodies resemble glycogen with reduced branching, suggesting an alteration in glycogen metabolism. Linkage analysis and homozygosity mapping localized EPM2A, a major gene for LD, to chromosome 6q24. EPM2A encodes a protein of 331 amino acids (named laforin) with two domains, a dual-specificity phosphatase domain and a carbohydrate binding domain. Here we show that, in addition, laforin interacts with itself and with the glycogen targeting regulatory subunit R5 of protein phosphatase 1 (PP1). R5 is the human homolog of the murine Protein Targeting to Glycogen, a protein that also acts as a molecular scaffold assembling PP1 with its substrate, glycogen synthase, at the intracellular glycogen particles. The laforin-R5 interaction was confirmed by pull-down and co-localization experiments. Full-length laforin is required for the interaction. However, a minimal central region of R5 (amino acids 116-238), including the binding sites for glycogen and for glycogen synthase, is sufficient to interact with laforin. Point-mutagenesis of the glycogen synthase-binding site completely blocked the interaction with laforin. The majority of the EPM2A missense mutations found in LD patients result in lack of phosphatase activity, absence of binding to glycogen and lack of interaction with R5. Interestingly, we have found that the LD-associated EPM2A missense mutation G240S has no effect on the phosphatase or glycogen binding activities of laforin but disrupts the interaction with R5, suggesting that binding to R5 is critical for the laforin function. These results place laforin in the context of a multiprotein complex associated with intracellular glycogen particles, reinforcing the concept that laforin is involved in the regulation of glycogen metabolism.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Enfermedad de Lafora/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Células COS , Fosfatasas de Especificidad Dual , Escherichia coli/genética , Genes Recesivos , Vectores Genéticos , Humanos , Ratones , Fosfoproteínas Fosfatasas , Plásmidos , Proteína Fosfatasa 1 , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...