Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682923

RESUMEN

Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74-103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74-103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74-103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1ß (IL-1ß) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74-103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.


Asunto(s)
Infecciones por Klebsiella , Neumonía Bacteriana , Animales , Quimiocina CXCL2 , Quimiocinas , Citocinas , Inflamación/tratamiento farmacológico , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/fisiología , Pulmón/microbiología , Ratones , Neutrófilos/microbiología , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología
3.
Clin Transl Immunology ; 11(2): e1370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140938

RESUMEN

OBJECTIVES: Renal fibrosis accompanies all chronic kidney disorders, ultimately leading to end-stage kidney disease and the need for dialysis or even renal replacement. As such, renal fibrosis poses a major threat to global health and the search for effective therapeutic strategies to prevent or treat fibrosis is highly needed. We evaluated the applicability of a highly positively charged human peptide derived from the COOH-terminal domain of the chemokine CXCL9, namely CXCL9(74-103), for therapeutic intervention. Because of its high density of net positive charges at physiological pH, CXCL9(74-103) competes with full-length chemokines for glycosaminoglycan (GAG) binding. Consequently, CXCL9(74-103) prevents recruitment of inflammatory leucocytes to sites of inflammation. METHODS: CXCL9(74-103) was chemically synthesised and tested in vitro for anti-fibrotic properties on human fibroblasts and in vivo in the unilateral ureteral obstruction (UUO) mouse model. RESULTS: CXCL9(74-103) significantly reduced the mRNA and/or protein expression of connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA) and collagen III by transforming growth factor (TGF)-ß1-stimulated human fibroblasts. In addition, administration of CXCL9(74-103) inhibited fibroblast migration towards platelet-derived growth factor (PDGF), without affecting cell viability. In the UUO model, CXCL9(74-103) treatment significantly decreased renal α-SMA, vimentin, and fibronectin mRNA and protein expression. Compared with vehicle, CXCL9(74-103) attenuated mRNA expression of TGF-ß1 and the inflammatory markers/mediators MMP-9, F4/80, CCL2, IL-6 and TNF-α. Finally, CXCL9(74-103) treatment resulted in reduced influx of leucocytes in the UUO model and preserved tubular morphology. The anti-fibrotic and anti-inflammatory effects of CXCL9(74-103) were mediated by competition with chemokines and growth factors for GAG binding. CONCLUSIONS: Our findings provide a scientific rationale for targeting GAG-protein interactions in renal fibrotic disease.

4.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680238

RESUMEN

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

5.
Hepatol Commun ; 5(10): 1737-1754, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34532999

RESUMEN

Hepatic cell death occurs in response to diverse stimuli such as chemical and physical damage. The exposure of intracellular contents such as DNA during necrosis induces a severe inflammatory response that has yet to be fully explored therapeutically. Here, we sought means to neutralize the ability of extracellular DNA to induce deleterious tissue inflammation when drug-induced liver injury had already ensued. DNA exposure and inflammation were investigated in vivo in drug-induced liver injury using intravital microscopy. The necrotic DNA debris was studied in murine livers in vivo and in DNA debris models in vitro by using a positively charged chemokine-derived peptide (MIG30; CXCL9[74-103]). Acetaminophen-induced liver necrosis was associated with massive DNA accumulation, production of CXC chemokines, and neutrophil activation inside the injured tissue. The MIG30 peptide bound the healthy liver vasculature and, to a much greater extent, to DNA-rich necrotic tissue. Moreover, MIG30 bound extracellular DNA directly in vivo in a charge-dependent manner and independently of glycosaminoglycans and chemokines. Post-treatment of mice with MIG30 reduced mortality, liver damage, and inflammation significantly. These effects were not observed with a control peptide that does not bind DNA. Mechanistically, MIG30 inhibited the interaction between DNA and histones, and promoted the dissociation of histones from necrotic debris. MIG30 also inhibited the pro-inflammatory effect of CpG DNA, as measured by a reduction in CXCL8 production, indicating that MIG30 disturbs the ability of DNA to induce hepatic inflammation. Conclusion: The use of DNA-binding peptides reduces necrotic liver injury and inflammation, even at late timepoints.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Degradación Necrótica del ADN/efectos de los fármacos , Hígado/patología , Péptidos/farmacología , Acetaminofén/efectos adversos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Quimiocina CXCL9/efectos de los fármacos , Quimiocinas CXC/efectos de los fármacos , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Histonas/efectos de los fármacos , Humanos , Interleucina-8/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Necrosis/inducido químicamente , Necrosis/patología , Activación Neutrófila/efectos de los fármacos , Electricidad Estática
6.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008874

RESUMEN

Although glycosaminoglycan (GAG)-protein interactions are important in many physiological and pathological processes, the structural requirements for binding are poorly defined. Starting with GAG-binding peptide CXCL9(74-103), peptides were designed to elucidate the contribution to the GAG-binding affinity of different: (1) GAG-binding motifs (i.e., BBXB and BBBXXB); (2) amino acids in GAG-binding motifs and linker sequences; and (3) numbers of GAG-binding motifs. The affinity of eight chemically synthesized peptides for various GAGs was determined by isothermal fluorescence titration (IFT). Moreover, the binding of peptides to cellular GAGs on Chinese hamster ovary (CHO) cells was assessed using flow cytometry with and without soluble GAGs. The repetition of GAG-binding motifs in the peptides contributed to a higher affinity for heparan sulfate (HS) in the IFT measurements. Furthermore, the presence of Gln residues in both GAG-binding motifs and linker sequences increased the affinity of trimer peptides for low-molecular-weight heparin (LMWH), partially desulfated (ds)LMWH and HS, but not for hyaluronic acid. In addition, the peptides bound to cellular GAGs with differential affinity, and the addition of soluble HS or heparin reduced the binding of CXCL9(74-103) to cellular GAGs. These results indicate that the affinity and specificity of peptides for GAGs can be tuned by adapting their amino acid sequence and their number of GAG-binding motifs.


Asunto(s)
Heparina de Bajo-Peso-Molecular/metabolismo , Heparitina Sulfato/metabolismo , Péptidos/química , Animales , Sitios de Unión , Células CHO , Cricetulus , Unión Proteica
7.
Front Immunol ; 11: 483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296423

RESUMEN

Leukocyte migration into tissues depends on the activity of chemokines that form concentration gradients to guide leukocytes to a specific site. Interaction of chemokines with their specific G protein-coupled receptors (GPCRs) on leukocytes induces leukocyte adhesion to the endothelial cells, followed by extravasation of the leukocytes and subsequent directed migration along the chemotactic gradient. Interaction of chemokines with glycosaminoglycans (GAGs) is crucial for extravasation in vivo. Chemokines need to interact with GAGs on endothelial cells and in the extracellular matrix in tissues in order to be presented on the endothelium of blood vessels and to create a concentration gradient. Local chemokine retention establishes a chemokine gradient and prevents diffusion and degradation. During the last two decades, research aiming at reducing chemokine activity mainly focused on the identification of inhibitors of the interaction between chemokines and their cognate GPCRs. This approach only resulted in limited success. However, an alternative strategy, targeting chemokine-GAG interactions, may be a promising approach to inhibit chemokine activity and inflammation. On this line, proteins derived from viruses and parasites that bind chemokines or GAGs may have the potential to interfere with chemokine-GAG interactions. Alternatively, chemokine mimetics, including truncated chemokines and mutant chemokines, can compete with chemokines for binding to GAGs. Such truncated or mutated chemokines are characterized by a strong binding affinity for GAGs and abrogated binding to their chemokine receptors. Finally, Spiegelmers that mask the GAG-binding site on chemokines, thereby preventing chemokine-GAG interactions, were developed. In this review, the importance of GAGs for chemokine activity in vivo and strategies that could be employed to target chemokine-GAG interactions will be discussed in the context of inflammation.


Asunto(s)
Quimiocinas/metabolismo , Quimiotaxis de Leucocito/fisiología , Glicosaminoglicanos/metabolismo , Inflamación/metabolismo , Animales , Células Endoteliales/metabolismo , Humanos , Inflamación/prevención & control
8.
Clin Exp Allergy ; 48(10): 1333-1344, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29978510

RESUMEN

BACKGROUND: To recruit leucocytes to an inflammatory site, chemokine binding to glycosaminoglycans (GAGs) is critical. Therefore, strategies to interfere with this interaction, aiming at the production of anti-inflammatory agents, were developed. These include production of modified chemokines without affinity for G protein-coupled receptors but with enhanced affinity for GAGs. Such modified chemokines compete with functional chemokines for GAG binding, prevent chemokine immobilization and presentation, and inhibit leucocyte migration. In addition to modified chemokines, a GAG-binding peptide consisting of the 30 COOH-terminal residues of CXCL9, that is CXCL9(74-103), inhibited CXCL8- and monosodium urate crystal-induced neutrophil migration. OBJECTIVE: We wanted to explore whether interference with chemokine-GAG interactions by CXCL9(74-103) reduces inflammation in neutrophil-dependent dinitrofluorobenzene-induced contact hypersensitivity. METHODS: For this study, we evaluated several inflammatory parameters, including ear swelling and the levels of chemokines, cytokines, proteases and neutrophils in the ears of dinitrofluorobenzene-induced mice treated with CXCL9(74-103) or buffer. RESULTS: One intravenous injection of CXCL9(74-103), just before painting with dinitrofluorobenzene on the ear, did not affect protein levels of the major murine neutrophil attractant, that is CXCL6, in this contact hypersensitivity model. However, IL-6, CXCL1, CCL2 and matrix metalloproteinase-9 (MMP-9) protein concentrations and peroxidase activity in challenged ears were reduced. In addition, intravenous injection of the CXCL9-derived peptide led to a reduced ear swelling response, indicating that the locally produced chemokines were hindered to attract leucocytes. The inhibiting potential of CXCL9(74-103) was explained by its competition for GAG binding with CXCL1, CXCL6 and CCL3 and inhibition of transendothelial migration of neutrophils to CXCL6. CONCLUSIONS AND CLINICAL RELEVANCE: The CXCL9(74-103) peptide inhibited dinitrofluorobenzene-induced infiltration of neutrophils and neutrophil-dependent inflammation in ears. Therefore, CXCL9(74-103) may be a lead molecule for the development of therapeutic peptides or peptide derivatives that compete with functional chemokines for GAG binding.


Asunto(s)
Antiinflamatorios/farmacología , Quimiocina CXCL9/química , Dermatitis por Contacto/etiología , Dermatitis por Contacto/metabolismo , Dinitrofluorobenceno/efectos adversos , Glicosaminoglicanos/metabolismo , Péptidos/farmacología , Animales , Citocinas/metabolismo , Dermatitis por Contacto/tratamiento farmacológico , Femenino , Leucocitos/inmunología , Leucocitos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Unión Proteica , Piel/inmunología , Piel/metabolismo , Piel/patología , Migración Transendotelial y Transepitelial
9.
J Leukoc Biol ; 104(2): 413-422, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29733455

RESUMEN

This study investigates if treatment with a peptide corresponding to the 30 C-terminal amino acids of CXCL9, CXCL9(74-103), ameliorates joint inflammation in a murine model of antigen-induced arthritis (AIA). AIA was induced in male C57BL/6J mice. Intravenous injection of CXCL9(74-103), simultaneously performed with a tibiofemoral challenge with methylated BSA (mBSA) as antigen in mice immunized with mBSA, diminished the accumulation of leukocytes, in particular neutrophils, in the synovial cavity. The levels of the chemokines CXCL1, CXCL2, and CXCL6 and of the cytokine IL-6 were decreased in inflamed periarticular tissue of mice treated with the CXCL9-derived peptide compared to non-treated AIA mice. In addition, CXCL9(74-103) treatment substantially reduced joint and cartilage damage. CXCL9(74-103) competes with CXCL6 and CCL3 for binding to the glycosaminoglycans heparan sulfate and chondroitin sulfate in vitro. In vivo, CXCL9(74-103) quickly binds to blood vessels in joints as observed by confocal microscopy. Next, we evaluated if later treatment with CXCL9(74-103) had a beneficial impact on joint inflammation. CXCL9(74-103) injection 6 h after mBSA challenge still reduced neutrophil accumulation in the joint, although it did not reduce chemokine and IL-6 concentrations. However, a delay of treatment until 12 h after challenge had no effect on cell recruitment and chemokine and IL-6 levels. Taken together, we demonstrated that treatment with a peptide, which interferes with the interaction between chemokines and glycosaminoglycans, from the beginning of the disease controlled the massive accumulation of neutrophils in the joint of AIA mice, greatly impacting on joint inflammation and tissue damage.


Asunto(s)
Artritis Experimental/patología , Artritis Reumatoide/patología , Quimiocina CXCL9/farmacología , Infiltración Neutrófila/efectos de los fármacos , Animales , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología
10.
Int J Mol Sci ; 19(2)2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401737

RESUMEN

Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.


Asunto(s)
Artritis Infecciosa/terapia , Articulaciones/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Infecciones Estafilocócicas/terapia , Antibacterianos/uso terapéutico , Artritis Infecciosa/inmunología , Artritis Infecciosa/microbiología , Artritis Infecciosa/cirugía , Artrocentesis/métodos , Artroscopía/métodos , Movimiento Celular/inmunología , Quimiocinas/inmunología , Quimiocinas/metabolismo , Humanos , Inflamación , Articulaciones/inmunología , Articulaciones/microbiología , Articulaciones/cirugía , Leucotrienos/inmunología , Leucotrienos/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/cirugía , Staphylococcus aureus , Succión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...