Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Geohealth ; 3(5): 127-144, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31276080

RESUMEN

The U.S. Southwest is projected to experience increasing aridity due to climate change. We quantify the resulting impacts on ambient dust levels and public health using methods consistent with the Environmental Protection Agency's Climate Change Impacts and Risk Analysis framework. We first demonstrate that U.S. Southwest fine (PM2.5) and coarse (PM2.5-10) dust levels are strongly sensitive to variability in the 2-month Standardized Precipitation-Evapotranspiration Index across southwestern North America. We then estimate potential changes in dust levels through 2099 by applying the observed sensitivities to downscaled meteorological output projected by six climate models following an intermediate (Representative Concentration Pathway 4.5, RCP4.5) and a high (RCP8.5) greenhouse gas concentration scenario. By 2080-2099 under RCP8.5 relative to 1986-2005 in the U.S. Southwest: (1) Fine dust levels could increase by 57%, and fine dust-attributable all-cause mortality and hospitalizations could increase by 230% and 360%, respectively; (2) coarse dust levels could increase by 38%, and coarse dust-attributable cardiovascular mortality and asthma emergency department visits could increase by 210% and 88%, respectively; (3) climate-driven changes in dust concentrations can account for 34-47% of these health impacts, with the rest due to increases in population and baseline incidence rates; and (4) economic damages of the health impacts could total $47 billion per year additional to the 1986-2005 value of $13 billion per year. Compared to national-scale climate impacts projected for other U.S. sectors using the Climate Change Impacts and Risk Analysis framework, dust-related mortality ranks fourth behind extreme temperature-related mortality, labor productivity decline, and coastal property loss.

3.
Lancet Planet Health ; 3(7): e307-e317, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31326071

RESUMEN

BACKGROUND: Increasing atmospheric concentrations of carbon dioxide (CO2) affect global nutrition via effects on agricultural productivity and nutrient content of food crops. We combined these effects with economic projections to estimate net changes in nutrient availability between 2010 and 2050. METHODS: In this modelling study, we used the International Model for Policy Analysis of Agricultural Commodities and Trade to project per capita availability of protein, iron, and zinc in 2050. We used estimated changes in productivity of individual agricultural commodities to model effects on production, trade, prices, and consumption under moderate and high greenhouse gas emission scenarios. Two independent sources of data, which used different methodologies to determine the effect of increased atmospheric CO2 on different key crops, were combined with the modelled food supply results to estimate future nutrient availability. FINDINGS: Although technological change, market responses, and the effects of CO2 fertilisation on yield are projected to increase global availability of dietary protein, iron, and zinc, these increases are moderated by negative effects of climate change affecting productivity and carbon penalties on nutrient content. The carbon nutrient penalty results in decreases in the global availability of dietary protein of 4·1%, iron of 2·8%, and zinc of 2·5% as calculated using one dataset, and decreases in global availability of dietary protein of 2·9%, iron of 3·9%, and zinc of 3·4% using the other dataset. The combined effects of projected increases in atmospheric CO2 (ie, carbon nutrient penalty, CO2 fertilisation, and climate effects on productivity) will decrease growth in the global availability of nutrients by 19·5% for protein, 14·4% for iron, and 14·6% for zinc relative to expected technology and market gains by 2050. The many countries that currently have high levels of nutrient deficiency would continue to be disproportionately affected. INTERPRETATION: This approach is an improvement in estimating future global food security by simultaneously projecting climate change effects on crop productivity and changes in nutrient content under increased concentrations of CO2, which accounts for a much larger effect on nutrient availability than CO2 fertilisation. Regardless of the scenario used to project future consumption patterns, the net effect of increasing concentrations of atmospheric CO2 will slow progress in decreasing global nutrient deficiencies. FUNDING: US Environmental Protection Agency, Consultative Group on International Agricultural Research (CIGAR) Research Program on Policies, Institutions and Markets (PIM), and the CGIAR Research Program on Climate Change and Food Security (CCAFS).


Asunto(s)
Dióxido de Carbono/análisis , Productos Agrícolas/fisiología , Dieta , Proteínas en la Dieta/metabolismo , Hierro de la Dieta/metabolismo , Nutrientes/metabolismo , Zinc/metabolismo , Atmósfera/análisis , Disponibilidad Biológica , Cambio Climático , Abastecimiento de Alimentos , Humanos , Modelos Teóricos
4.
Geohealth ; 3(1): 11-27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106285

RESUMEN

Pollen is an important environmental cause of allergic asthma episodes. Prior work has established a proof of concept for assessing projected climate change impacts on future oak pollen exposure and associated health impacts. This paper uses additional monitor data and epidemiologic functions to extend prior analyses, reporting new estimates of the current and projected future health burden of oak, birch, and grass pollen across the contiguous United States. Our results suggest that tree pollen in the spring currently accounts for between 25,000 and 50,000 pollen-related asthma emergency department (ED) visits annually (95% confidence interval: 14,000 to 100,000), roughly two thirds of which occur among people under age 18. Grass pollen in the summer season currently accounts for less than 10,000 cases annually (95% confidence interval: 4,000 to 16,000). Compared to a baseline with 21st century population growth but constant pollen, future temperature and precipitation show an increase in ED visits of 14% in 2090 for a higher greenhouse gas emissions scenario, but only 8% for a moderate emissions scenario, reflecting projected increases in pollen season length. Grass pollen, which is more sensitive to changes in climatic conditions, is a primary contributor to future ED visits, with the largest effects in the Northeast, Midwest, and Southern Great Plains regions. More complete assessment of the current and future health burden of pollen is limited by the availability of data on pollen types (e.g., ragweed), other health effects (e.g., other respiratory disease), and economic consequences (e.g., medication costs).

5.
Geophys Res Lett ; 46(7): 3963-3972, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31130757

RESUMEN

The changing risk of extreme precipitation is difficult to project. Events are rare by definition, and return periods of heavy precipitation events are often calculated assuming a stationary climate. Furthermore, ensembles of climate model projections are not large enough to fully categorize the tails of the distribution. To address this, we cluster the contiguous United States into self-similar hydroclimates to estimate changes in the expected frequency of extremely rare events under scenarios of global mean temperature change. We find that, although there is some regional variation, record events are projected in general to become more intense, with 500-year events intensifying by 10-50% under 2 °C of warming and by 40-100% under 4 °C of warming. This analysis could provide information to inform regional prioritization of resources to improve the resilience of U.S. infrastructure.

6.
Nat Clim Chang ; 9: 397-404, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-31031825

RESUMEN

There is a growing capability to project the impacts and economic effects of climate change across multiple sectors. This information is needed to inform decisions regarding the diversity and magnitude of future climate impacts and explore how mitigation and adaptation actions might affect these risks. Here, we summarize results from sectoral impact models applied within a consistent modelling framework to project how climate change will affect 22 impact sectors of the United States, including effects on human health, infrastructure and agriculture. The results show complex patterns of projected changes across the country, with damages in some sectors (for example, labour, extreme temperature mortality and coastal property) estimated to range in the hundreds of billions of US dollars annually by the end of the century under high emissions. Inclusion of a large number of sectors shows that there are no regions that escape some mix of adverse impacts. Lower emissions, and adaptation in relevant sectors, would result in substantial economic benefits.

7.
Lancet Planet Health ; 3(3): e124-e131, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30904111

RESUMEN

BACKGROUND: Ongoing climate change might, through rising temperatures, alter allergenic pollen biology across the northern hemisphere. We aimed to analyse trends in pollen seasonality and pollen load and to establish whether there are specific climate-related links to any observed changes. METHODS: For this retrospective data analysis, we did an extensive search for global datasets with 20 years or more of airborne pollen data that consistently recorded pollen season indices (eg, duration and intensity). 17 locations across three continents with long-term (approximately 26 years on average) quantitative records of seasonal concentrations of multiple pollen (aeroallergen) taxa met the selection criteria. These datasets were analysed in the context of recent annual changes in maximum temperature (Tmax) and minimum temperature (Tmin) associated with anthropogenic climate change. Seasonal regressions (slopes) of variation in pollen load and pollen season duration over time were compared to Tmax, cumulative degree day Tmax, Tmin, cumulative degree day Tmin, and frost-free days among all 17 locations to ascertain significant correlations. FINDINGS: 12 (71%) of the 17 locations showed significant increases in seasonal cumulative pollen or annual pollen load. Similarly, 11 (65%) of the 17 locations showed a significant increase in pollen season duration over time, increasing, on average, 0·9 days per year. Across the northern hemisphere locations analysed, annual cumulative increases in Tmax over time were significantly associated with percentage increases in seasonal pollen load (r=0·52, p=0·034) as were annual cumulative increases in Tmin (r=0·61, p=0·010). Similar results were observed for pollen season duration, but only for cumulative degree days (higher than the freezing point [0°C or 32°F]) for Tmax (r=0·53, p=0·030) and Tmin (r=0·48, p=0·05). Additionally, temporal increases in frost-free days per year were significantly correlated with increases in both pollen load (r=0·62, p=0·008) and pollen season duration (r=0·68, p=0·003) when averaged for all 17 locations. INTERPRETATION: Our findings reveal that the ongoing increase in temperature extremes (Tmin and Tmax) might already be contributing to extended seasonal duration and increased pollen load for multiple aeroallergenic pollen taxa in diverse locations across the northern hemisphere. This study, done across multiple continents, highlights an important link between ongoing global warming and public health-one that could be exacerbated as temperatures continue to increase. FUNDING: None.


Asunto(s)
Alérgenos/análisis , Calentamiento Global , Calor , Polen , Asia , Europa (Continente) , América del Norte , Estudios Retrospectivos , Estaciones del Año
9.
Environ Health Perspect ; 126(4): 047007, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669405

RESUMEN

BACKGROUND: The public health community readily recognizes flooding and wildfires as climate-related health hazards, but few studies quantify changes in risk of exposure, particularly for vulnerable children and older adults. OBJECTIVES: This study quantifies future populations potentially exposed to inland flooding and wildfire smoke under two climate scenarios, highlighting the populations in particularly vulnerable age groups (≤4 y old and ≥65 y old). METHODS: Spatially explicit projections of inland flooding and wildfire under two representative concentration pathways (RCP8.5 and RCP4.5) are integrated with static (2010) and dynamic (2050 and 2090) age-stratified projections of future contiguous U.S. populations at the county level. RESULTS: In both 2050 and 2090, an additional one-third of the population will live in areas affected by larger and more frequent inland flooding under RCP8.5 than under RCP4.5. Approximately 15 million children and 25 million older adults could avoid this increased risk of flood exposure each year by 2090 under a moderate mitigation scenario (RCP4.5 compared with RCP8.5). We also find reduced exposure to wildfire smoke under the moderate mitigation scenario. Nearly 1 million young children and 1.7 million older adults would avoid exposure to wildfire smoke each year under RCP4.5 than under RCP8.5 by the end of the century. CONCLUSIONS: By integrating climate-driven hazard and population projections, newly created county-level exposure maps identify locations of potential significant future public health risk. These potential exposure results can help inform actions to prevent and prepare for associated future adverse health outcomes, particularly for vulnerable children and older adults. https://doi.org/10.1289/EHP2594.


Asunto(s)
Cambio Climático , Exposición a Riesgos Ambientales/efectos adversos , Inundaciones , Humo/efectos adversos , Incendios Forestales , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Salud Pública , Riesgo , Estados Unidos , Adulto Joven
10.
Geohealth ; 1(3): 80-92, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-32158983

RESUMEN

Future climate change is expected to lengthen and intensify pollen seasons in the U.S., potentially increasing incidence of allergic asthma. We developed a proof-of-concept approach for estimating asthma emergency department (ED) visits in the U.S. associated with present-day and climate-induced changes in oak pollen. We estimated oak pollen season length for moderate (Representative Concentration Pathway (RCP) 4.5) and severe climate change scenarios (RCP8.5) through 2090 using five climate models and published relationships between temperature, precipitation, and oak pollen season length. We calculated asthma ED visit counts associated with 1994-2010 average oak pollen concentrations and simulated future oak pollen season length changes using the Environmental Benefits Mapping and Analysis Program, driven by epidemiologically derived concentration-response relationships. Oak pollen was associated with 21,200 (95% confidence interval, 10,000-35,200) asthma ED visits in the Northeast, Southeast, and Midwest U.S. in 2010, with damages valued at $10.4 million. Nearly 70% of these occurred among children age <18 years. Severe climate change could increase oak pollen season length and associated asthma ED visits by 5% and 10% on average in 2050 and 2090, with a marginal net present value through 2090 of $10.4 million (additional to the baseline value of $346.2 million). Moderate versus severe climate change could avoid >50% of the additional oak pollen-related asthma ED visits in 2090. Despite several key uncertainties and limitations, these results suggest that aeroallergens pose a substantial U.S. public health burden, that climate change could increase U.S. allergic disease incidence, and that mitigating climate change may have benefits from avoided pollen-related health impacts.

11.
Environ Sci Technol ; 50(13): 6873-81, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27227378

RESUMEN

The United States (U.S.) Environmental Protection Agency (EPA) has established voluntary programs to reduce methane (CH4) emissions, and regulations that either directly reduce CH4 or provide co-benefits of reducing CH4 emissions while controlling for other air pollutants. These programs and regulations address four sectors that are among the largest domestic CH4 emissions sources: municipal solid waste landfills, oil and natural gas, coal mining, and agricultural manure management. Over the 1993-2013 time period, 127.9 Tg of CH4 emissions reductions were attributed to these programs, equal to about 18% of the counterfactual (or potential) domestic emissions over that time, with almost 70% of the abatement due to landfill sector regulations. Reductions attributed to the voluntary programs increased nearly continuously during the study period. We quantified how these reductions influenced atmospheric CH4 concentration and global temperature, finding a decrease in concentration of 28 ppb and an avoided temperature rise of 0.006 °C by 2013. Further, we monetized the climate and ozone-health impacts of the CH4 reductions, yielding an estimated benefit of $255 billion. These results indicate that EPA programs and policies have made a strong contribution to CH4 abatement, with climate and air quality benefits.


Asunto(s)
Metano , United States Environmental Protection Agency , Contaminantes Atmosféricos , Clima , Estados Unidos , Instalaciones de Eliminación de Residuos
12.
Nature ; 486(7401): 97-100, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22678287

RESUMEN

Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (∼12-5 Myr ago), an interval with p(co(2)) values of only 200-350 parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ∼12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ∼13 Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5 Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Calentamiento Global/historia , Calor , Agua de Mar , Dióxido de Carbono/química , Foraminíferos/química , Sedimentos Geológicos/química , Calentamiento Global/estadística & datos numéricos , Historia Antigua , Océanos y Mares , Isótopos de Oxígeno/análisis , Agua de Mar/análisis , Agua de Mar/química , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA