Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38549512

RESUMEN

Chronotype is a proxy sleep measure that has been associated with neuropsychiatric disorders. By investigating how chronotype influences risk for neuropsychiatric disorders and vice versa, we may identify modifiable risk factors for each phenotype. Here we used Mendelian randomization (MR), to explore causal effects by (1) studying the causal relationships between neuropsychiatric disorders and chronotype and (2) characterizing the genetic components of these phenotypes. Firstly, we investigated if a causal role exists between five neuropsychiatric disorders and chronotype using the largest genome-wide association studies (GWAS) available. Secondly, we integrated data from expression quantitative trait loci (eQTLs) to investigate the role of gene expression alterations on these phenotypes. Evening chronotype was causal for increased risk of schizophrenia and autism spectrum disorder and schizophrenia was causal for a tendency toward evening chronotype. We identified 12 eQTLs where gene expression changes in brain or blood were causal for one of the phenotypes, including two eQTLs for SNX19 in hippocampus and hypothalamus that were causal for schizophrenia. These findings provide important evidence for the complex, bidirectional relationship that exists between a sleep-based phenotype and neuropsychiatric disorders, and use gene expression data to identify causal roles for genes at associated loci.

2.
Genes Brain Behav ; 23(1): e12885, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38359178

RESUMEN

Genome-wide association studies (GWAS) have been important for characterizing the genetic component and enhancing our understanding of the biological aetiology of both neuropsychiatric disorders and sleep-related phenotypes such as chronotype, which is our preference for morning or evening time. Mendelian randomization (MR) is a post-GWAS analysis that is used to infer causal relationships between potential risk factors and outcomes. MR uses genetic variants as instrumental variants for exposures to study the effect on outcomes. This review details the main results from GWAS of neuropsychiatric disorders and sleep-related phenotypes, and the application of MR to investigate their bidirectional relationship. The main results from MR studies of neuropsychiatric disorders and sleep-related phenotypes are summarized. These MR studies have identified 37 causal relationships between neuropsychiatric disorders and sleep-related phenotypes. MR studies identified evidence of a causal role for five neuropsychiatric disorders and symptoms (attention deficit hyperactivity disorder, bipolar disorder, depressive symptoms, major depressive disorder and schizophrenia) on sleep-related phenotypes and evidence of a causal role for five sleep-related phenotypes (daytime napping, insomnia, morning person, long sleep duration and sleep duration) on risk for neuropsychiatric disorders. These MR results show a bidirectional relationship between neuropsychiatric disorders and sleep-related phenotypes and identify potential risk factors for follow-up studies.


Asunto(s)
Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Cronotipo , Análisis de la Aleatorización Mendeliana , Sueño/genética
3.
Microb Pathog ; 153: 104741, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33588026

RESUMEN

BACKGROUND: Coronavirus (COVID-19) was introduced into society in late 2019 and has now reached over 88 million cases and 1.9 million deaths. The Middle East has a death toll of ~80,000 and over 35000 of these are in Iran, which has over 1.2 million confirmed cases. We expect that Iranian cases caused outbreaks in the neighbouring countries and that variant mapping and phylogenetic analysis can be used to prove this. We also aim to analyse the variants of severe acute respiratory syndrome coronavirus-2 (SARS -CoV-2) to characterise the common genome variants and provide useful data in the global effort to prevent further spread of COVID-19. METHODS: The approach uses bioinformatics approaches including multiple sequence alignment, variant calling and annotation and phylogenetic analysis to identify the genomic variants found in the region. The approach uses 122 samples from the 13 countries of the Middle East sourced from the Global Initiative on Sharing All Influenza Data (GISAID). FINDINGS: We identified 2200 distinct genome variants including 129 downstream gene variants, 298 frame shift variants, 789 missense variants, 1 start lost, 13 start gained, 1 stop lost, 249 synonymous variants and 720 upstream gene variants. The most common, high impact variants were 10818delTinsG, 2772delCinsC, 14159delCinsC and 2789delAinsA. These high impact variant ultimately results in 36 number of mutations on spike glycoprotein. Variant alignment and phylogenetic tree generation indicates that samples from Iran likely introduced COVID-19 to the rest of the Middle East. INTERPRETATION: The phylogenetic and variant analysis provides unique insight into mutation types in genomes. Initial introduction of COVID-19 was most likely due to Iranian transmission. Some countries show evidence of novel mutations and unique strains. Increased time in small populations is likely to contribute to more unique genomes. This study provides more in depth analysis of the variants affecting in the region than any other study.


Asunto(s)
Variación Genética/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Bases/genética , COVID-19/epidemiología , COVID-19/mortalidad , COVID-19/virología , Genoma Viral/genética , Humanos , Medio Oriente/epidemiología , Mutación/genética , Filogenia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA