Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 12(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290929

RESUMEN

Potato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato.


Asunto(s)
Cromosomas de las Plantas , Diploidia , Fitomejoramiento , Solanum tuberosum/genética , Translocación Genética , Tetraploidía
2.
Chembiochem ; 20(1): 83-87, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30300974

RESUMEN

Genome mining is a routine technique in microbes for discovering biosynthetic pathways. In plants, however, genomic information is not commonly used to identify novel biosynthesis genes. Here, we present the genome of the medicinal plant and oxindole monoterpene indole alkaloid (MIA) producer Gelsemium sempervirens (Gelsemiaceae). A gene cluster from Catharanthus roseus, which is utilized at least six enzymatic steps downstream from the last common intermediate shared between the two plant alkaloid types, is found in G. sempervirens, although the corresponding enzymes act on entirely different substrates. This study provides insights into the common genomic context of MIA pathways and is an important milestone in the further elucidation of the Gelsemium oxindole alkaloid pathway.


Asunto(s)
Gelsemium/genética , Genes de Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Familia de Multigenes , Catharanthus/genética , Estudios de Asociación Genética , Genoma , Raíces de Plantas/genética
3.
Nat Commun ; 9(1): 4580, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389915

RESUMEN

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


Asunto(s)
Diploidia , Genoma de Planta , Ipomoea batatas/genética , Fitomejoramiento , Secuencia de Bases , Carotenoides/metabolismo , Ecotipo , Variación Genética , Genómica , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética
4.
Plant Genome ; 11(1)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505643

RESUMEN

Switchgrass ( is a perennial native North American grass present in two ecotypes: upland, found primarily in the northern range of switchgrass habitats, and lowland, found largely in the southern reaches of switchgrass habitats. Previous studies focused on a diversity panel of primarily northern switchgrass, so to expand our knowledge of genetic diversity in a broader set of North American switchgrass, exome capture sequence data were generated for 632 additional, primarily lowland individuals. In total, over 37 million single nucleotide polymorphisms (SNPs) were identified and a set of 1.9 million high-confidence SNPs were obtained from 1169 individuals from 140 populations (67 upland, 65 lowland, 8 admixed) were used in downstream analyses of genetic diversity and population structure. Seven separate population groups were identified with moderate genetic differentiation [mean fixation index (Fst) estimate of 0.06] between the lowland and the upland populations. Ecotype-specific and population-specific SNPs were identified for use in germplasm evaluations. Relative to rice ( L.), maize ( L.), soybean [ (L.) Merr.], and Gaertn., analyses of nucleotide diversity revealed a high degree of genetic diversity (0.0135) across all individuals, consistent with the outcrossing mode of reproduction and the polyploidy of switchgrass. This study supports the hypothesis that repeated glaciation events, ploidy barriers, and restricted gene flow caused by flowering time differences have resulted in distinct gene pools across ecotypes and geographic regions. These data provide a resource to associate alleles with traits of interest for forage, restoration, and biofuel feedstock efforts in switchgrass.


Asunto(s)
Variación Genética , Genética de Población , Panicum/genética , Ecotipo , Exoma , Flujo Génico , Pool de Genes , Ploidias , Polimorfismo de Nucleótido Simple , Estados Unidos
5.
Plant J ; 94(3): 562-570, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29405524

RESUMEN

Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.


Asunto(s)
Alcaloides/metabolismo , Genoma de Planta/genética , Tubérculos de la Planta/metabolismo , Solanum/genética , Diploidia , Genes de Plantas/genética , Tubérculos de la Planta/genética , Análisis de Secuencia de ADN , Solanum/anatomía & histología , Solanum/metabolismo
6.
Plant Direct ; 2(10): e00092, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31245692

RESUMEN

Sweet potato (Ipomoea batatas [L.] Lam.) is an important subsistence crop in Sub-Saharan Africa, yet as for many crops, yield can be severely impacted by drought stress. Understanding the genetic mechanisms that control drought tolerance can facilitate the development of drought-tolerant sweet potato cultivars. Here, we report an expression profiling study using the US-bred cultivar, Beauregard, and a Ugandan landrace, Tanzania, treated with polyethylene glycol (PEG) to simulate drought and sampled at 24 and 48 hr after stress. At each time-point, between 4,000 to 6,000 genes in leaf tissue were differentially expressed in each cultivar. Approximately half of these differentially expressed genes were common between the two cultivars and were enriched for Gene Ontology terms associated with drought response. Three hundred orthologs of drought tolerance genes reported in model species were identified in the Ipomoea trifida reference genome, of which 122 were differentially expressed under at least one experimental condition, constituting a list of drought tolerance candidate genes. A subset of genes was differentially regulated between Beauregard and Tanzania, representing genotype-specific responses to drought stress. The data analyzed and reported here provide a resource for geneticists and breeders toward identifying and utilizing drought tolerance genes in sweet potato.

7.
G3 (Bethesda) ; 8(2): 385-391, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237703

RESUMEN

Calotropis gigantea produces specialized secondary metabolites known as cardenolides, which have anticancer and antimalarial properties. Although transcriptomic studies have been conducted in other cardenolide-producing species, no nuclear genome assembly for an Asterid cardenolide-producing species has been reported to date. A high-quality de novo assembly was generated for C. gigantea, representing 157,284,427 bp with an N50 scaffold size of 805,959 bp, for which quality assessments indicated a near complete representation of the genic space. Transcriptome data in the form of RNA-sequencing libraries from a developmental tissue series was generated to aid the annotation and construction of a gene expression atlas. Using an ab initio and evidence-driven gene annotation pipeline, 18,197 high-confidence genes were annotated. Homologous and syntenic relationships between C. gigantea and other species within the Apocynaceae family confirmed previously identified evolutionary relationships, and suggest the emergence or loss of the specialized cardenolide metabolites after the divergence of the Apocynaceae subfamilies. The C. gigantea genome assembly, annotation, and RNA-sequencing data provide a novel resource to study the cardenolide biosynthesis pathway, especially for understanding the evolutionary origin of cardenolides and the engineering of cardenolide production in heterologous organisms for existing and novel pharmaceutical applications.


Asunto(s)
Antimaláricos/metabolismo , Antineoplásicos/metabolismo , Calotropis/genética , Cardenólidos/metabolismo , Genoma de Planta/genética , Plantas Medicinales/genética , Vías Biosintéticas/genética , Calotropis/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular/métodos , Plantas Medicinales/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(46): E9999-E10008, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087343

RESUMEN

Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid Stuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14-16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (Stuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato's maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly Smicrodontum in long-day-adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day-adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.


Asunto(s)
Evolución Biológica , Domesticación , Genes de Plantas/genética , Variación Genética , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Solanum/genética , Alelos , Metabolismo de los Hidratos de Carbono/genética , Ciclo Celular/genética , Cromosomas de las Plantas , Ritmo Circadiano/genética , Diploidia , Endorreduplicación/genética , Fertilidad/genética , Gametogénesis/genética , Regulación de la Expresión Génica de las Plantas , Pool de Genes , Genotipo , Haplotipos , Redes y Vías Metabólicas/genética , América del Norte , Perú , Fenotipo , Filogenia , Polen/genética , Polen/crecimiento & desarrollo , Poliploidía , América del Sur , Especificidad de la Especie , Tetraploidía
9.
Genome Biol ; 18(1): 203, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084572

RESUMEN

BACKGROUND: Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic maps have been developed for numerous plant species since the late 1980s, few of these maps have provided the necessary resolution needed to investigate the genomic and epigenomic features underlying meiotic crossovers. RESULTS: Using a whole genome sequencing-based approach, we developed two high-density reference-based haplotype maps using diploid potato clones as parents. The vast majority (81%) of meiotic crossovers were mapped to less than 5 kb. The fine-scale accuracy of crossover detection was validated by Sanger sequencing for a subset of ten crossover events. We demonstrate that crossovers reside in genomic regions of "open chromatin", which were identified based on hypersensitivity to DNase I digestion and association with H3K4me3-modified nucleosomes. The genomic regions spanning crossovers were significantly enriched with the Stowaway family of miniature inverted-repeat transposable elements (MITEs). The occupancy of Stowaway elements in gene promoters is concomitant with an increase in recombination rate. A generalized linear model identified the presence of Stowaway elements as the third most important genomic or chromatin feature behind genes and open chromatin for predicting crossover formation over 10-kb windows. CONCLUSIONS: Collectively, our results suggest that meiotic crossovers in potato are largely determined by the local chromatin status, marked by accessible chromatin, H3K4me3-modified nucleosomes, and the presence of Stowaway transposons.


Asunto(s)
Cromatina/química , Intercambio Genético , Elementos Transponibles de ADN , Meiosis/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genómica , Haplotipos
10.
Gigascience ; 6(9): 1-7, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922823

RESUMEN

Camptotheca acuminata is 1 of a limited number of species that produce camptothecin, a pentacyclic quinoline alkaloid with anti-cancer activity due to its ability to inhibit DNA topoisomerase. While transcriptome studies have been performed previously with various camptothecin-producing species, no genome sequence for a camptothecin-producing species is available to date. We generated a high-quality de novo genome assembly for C. acuminata representing 403 174 860 bp on 1394 scaffolds with an N50 scaffold size of 1752 kbp. Quality assessments of the assembly revealed robust representation of the genome sequence including genic regions. Using a novel genome annotation method, we annotated 31 825 genes encoding 40 332 gene models. Based on sequence identity and orthology with validated genes from Catharanthus roseus as well as Pfam searches, we identified candidate orthologs for genes potentially involved in camptothecin biosynthesis. Extensive gene duplication including tandem duplication was widespread in the C. acuminata genome, with 2571 genes belonging to 997 tandem duplicated gene clusters. To our knowledge, this is the first genome sequence for a camptothecin-producing species, and access to the C. acuminata genome will permit not only discovery of genes encoding the camptothecin biosynthetic pathway but also reagents that can be used for heterologous expression of camptothecin and camptothecin analogs with novel pharmaceutical applications.


Asunto(s)
Camptotheca/genética , Genoma de Planta , Antineoplásicos/química , Antineoplásicos/metabolismo , Camptotheca/clasificación , Camptotecina/biosíntesis , Mapeo Contig , Duplicación de Gen , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Secuencias Repetidas en Tándem , Secuenciación Completa del Genoma
11.
Plant Cell ; 28(2): 388-405, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26772996

RESUMEN

Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Duplicación de Gen , Variación Genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Genotipo , Hibridación Fluorescente in Situ , Fenotipo , Filogenia , Reproducción Asexuada/genética , Solanum tuberosum/fisiología , Especificidad de la Especie
12.
Plant J ; 84(4): 800-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26426343

RESUMEN

Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between the populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.


Asunto(s)
Exoma/genética , Variación Genética , Panicum/genética , Análisis de Secuencia de ADN/métodos , Cromosomas de las Plantas/genética , Variaciones en el Número de Copia de ADN , Ecosistema , Ecotipo , Genética de Población , Genoma de Planta/genética , Genotipo , Geografía , Panicum/clasificación , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Poliploidía , Especificidad de la Especie , Estados Unidos
13.
Plant J ; 79(6): 993-1008, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24947485

RESUMEN

Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1,395,501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Variación Genética , Genoma de Planta/genética , Panicum/genética , Alelos , Secuencia de Bases , Ecotipo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Poliploidía , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...