Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 158: 253-277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670709

RESUMEN

Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Células Satélite del Músculo Esquelético , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Animales , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Nat Commun ; 14(1): 535, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726011

RESUMEN

Adult stem cells are indispensable for tissue regeneration, but their function declines with age. The niche environment in which the stem cells reside plays a critical role in their function. However, quantification of the niche effect on stem cell function is lacking. Using muscle stem cells (MuSC) as a model, we show that aging leads to a significant transcriptomic shift in their subpopulations accompanied by locus-specific gain and loss of chromatin accessibility and DNA methylation. By combining in vivo MuSC transplantation and computational methods, we show that the expression of approximately half of all age-altered genes in MuSCs from aged male mice can be restored by exposure to a young niche environment. While there is a correlation between gene reversibility and epigenetic alterations, restoration of gene expression occurs primarily at the level of transcription. The stem cell niche environment therefore represents an important therapeutic target to enhance tissue regeneration in aging.


Asunto(s)
Células Madre Adultas , Músculo Esquelético , Masculino , Ratones , Animales , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas , Células Madre/metabolismo , Envejecimiento/fisiología
3.
Cell Rep ; 41(7): 111645, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384129

RESUMEN

Skeletal muscle is populated with a reservoir of quiescent muscle stem cells (MuSCs), which regenerate the tissue after injury. Here, we show that the adhesion G-protein-coupled receptor Gpr116 is essential for long-term maintenance of the MuSC pool. Quiescent MuSCs express high levels of Gpr116, which is rapidly downregulated upon MuSC activation. MuSCs deficient for Gpr116 exhibit progressive depletion over time and are defective in self-renewal. Adhesion G-protein-coupled receptors contain an agonistic peptide sequence, called the "Stachel" sequence, within their long N-terminal ectodomains. Stimulation of MuSCs with the GPR116 Stachel peptide delays MuSC activation and differentiation. Stachel peptide stimulation of GPR116 leads to strong interaction with ß-arrestins. Stimulation of GPR116 increases the nuclear localization of ß-arrestin1, where it interacts with cAMP response element binding protein to regulate gene expression. Altogether, we propose a model by which GPR116 maintains the MuSC pool via nuclear functions of ß-arrestin1.


Asunto(s)
Fibras Musculares Esqueléticas , Mioblastos , Mioblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Músculo Esquelético/fisiología , Péptidos/metabolismo
4.
Cell Stem Cell ; 29(9): 1315-1332.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998642

RESUMEN

Quiescence regulation is essential for adult stem cell maintenance and sustained regeneration. Our studies uncovered that physiological changes in mitochondrial shape regulate the quiescent state of adult muscle stem cells (MuSCs). We show that MuSC mitochondria rapidly fragment upon an activation stimulus, via systemic HGF/mTOR, to drive the exit from deep quiescence. Deletion of the mitochondrial fusion protein OPA1 and mitochondrial fragmentation transitions MuSCs into G-alert quiescence, causing premature activation and depletion upon a stimulus. OPA1 loss activates a glutathione (GSH)-redox signaling pathway promoting cell-cycle progression, myogenic gene expression, and commitment. MuSCs with chronic OPA1 loss, leading to mitochondrial dysfunction, continue to reside in G-alert but acquire severe cell-cycle defects. Additionally, we provide evidence that OPA1 decline and impaired mitochondrial dynamics contribute to age-related MuSC dysfunction. These findings reveal a fundamental role for OPA1 and mitochondrial dynamics in establishing the quiescent state and activation potential of adult stem cells.


Asunto(s)
Células Madre Adultas , Proteínas Mitocondriales , Dinámicas Mitocondriales , Músculos , Mioblastos
5.
J Cell Physiol ; 237(4): 2271-2287, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35141958

RESUMEN

The physiological functions and downstream effectors of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain to be characterized. We recently reported that mice expressing catalytically-inactive ERK3 (Mapk6KD/KD ) exhibit a reduced postnatal growth rate as compared to control mice. Here, we show that genetic inactivation of ERK3 impairs postnatal skeletal muscle growth and adult muscle regeneration after injury. Loss of MAPK-activated protein kinase 5 (MK5) phenocopies the muscle phenotypes of Mapk6KD/KD mice. At the cellular level, genetic or pharmacological inactivation of ERK3 or MK5 induces precocious differentiation of C2C12 or primary myoblasts, concomitant with MyoD activation. Reciprocally, ectopic expression of activated MK5 inhibits myogenic differentiation. Mechanistically, we show that MK5 directly phosphorylates FoxO3, promoting its degradation and reducing its association with MyoD. Depletion of FoxO3 rescues in part the premature differentiation of C2C12 myoblasts observed upon inactivation of ERK3 or MK5. Our findings reveal that ERK3 and its substrate MK5 act in a linear signaling pathway to control postnatal myogenic differentiation.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Transducción de Señal , Animales , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Músculos , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Skelet Muscle ; 12(1): 5, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151369

RESUMEN

BACKGROUND: Lifelong regeneration of the skeletal muscle is dependent on a rare population of resident skeletal muscle stem cells, also named 'satellite cells' for their anatomical position on the outside of the myofibre and underneath the basal lamina. Muscle stem cells maintain prolonged quiescence, but activate the myogenic programme and the cell cycle in response to injury to expand a population of myogenic progenitors required to regenerate muscle. The skeletal muscle does not regenerate in the absence of muscle stem cells. MAIN BODY: The notion that lifelong regeneration of the muscle is dependent on a rare, non-redundant population of stem cells seems contradictory to accumulating evidence that muscle stem cells have activated multiple stress response pathways. For example, muscle stem cell quiescence is mediated in part by the eIF2α arm of the integrated stress response and by negative regulators of mTORC1, two translational control pathways that downregulate protein synthesis in response to stress. Muscle stem cells also activate pathways to protect against DNA damage, heat shock, and environmental stress. Here, we review accumulating evidence that muscle stem cells encounter stress during their prolonged quiescence and their activation. While stress response pathways are classically described to be bimodal whereby a threshold dictates cell survival versus cell death responses to stress, we review evidence that muscle stem cells additionally respond to stress by spontaneous activation and fusion to myofibres. CONCLUSION: We propose a cellular stress test model whereby the prolonged state of quiescence and the microenvironment serve as selective pressures to maintain muscle stem cell fitness, to safeguard the lifelong regeneration of the muscle. Fit muscle stem cells that maintain robust stress responses are permitted to maintain the muscle stem cell pool. Unfit muscle stem cells are depleted from the pool first by spontaneous activation, or in the case of severe stress, by activating cell death or senescence pathways.


Asunto(s)
Mioblastos , Células Satélite del Músculo Esquelético , Diferenciación Celular/genética , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Células Madre
7.
Development ; 148(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33318147

RESUMEN

Translational control of gene expression is an important regulator of adult stem cell quiescence, activation and self-renewal. In skeletal muscle, quiescent satellite cells maintain low levels of protein synthesis, mediated in part through the phosphorylation of eIF2α (P-eIF2α). Pharmacological inhibition of the eIF2α phosphatase with the small molecule sal003 maintains P-eIF2α and permits the expansion of satellite cells ex vivo Paradoxically, P-eIF2α also increases the translation of specific mRNAs, which is mediated by P-eIF2α-dependent read-through of inhibitory upstream open reading frames (uORFs). Here, we ask whether P-eIF2α-dependent mRNA translation enables expansion of satellite cells. Using transcriptomic and proteomic analyses, we show a number of genes associated with the assembly of the spindle pole to be upregulated at the level of protein, without corresponding change in mRNA levels, in satellite cells expanded in the presence of sal003. We show that uORFs in the 5' UTR of mRNA for the mitotic spindle stability gene Tacc3 direct P-eIF2α-dependent translation. Satellite cells deficient for TACC3 exhibit defects in expansion, self-renewal and regeneration of skeletal muscle.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Biosíntesis de Proteínas , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular , Autorrenovación de las Células , Células Cultivadas , Regulación hacia Abajo/genética , Ratones Endogámicos C57BL , Factor de Transcripción PAX7/metabolismo , Fosforilación , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración , Transcriptoma/genética , Regulación hacia Arriba/genética
8.
Cell Stem Cell ; 24(6): 944-957.e5, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006621

RESUMEN

Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3 expression, and has reduced ROS (reactive oxygen species) levels. Mx1+ SCs possess potent stem cell activity upon transplantation but minimally contribute to endogenous muscle repair, due to their relative low abundance. In contrast, a dramatic clonal expansion of Mx1+ SCs allows extensive contribution to muscle repair and niche repopulation upon selective pressure of radiation stress, consistent with reserve stem cell (RSC) properties. Loss of Pax3 in RSCs increased ROS content and diminished survival and stress tolerance. These observations demonstrate that the Pax7+ SC pool contains a discrete population of radiotolerant RSCs that undergo clonal expansion under severe stress.


Asunto(s)
Células Madre Adultas/fisiología , Daño del ADN/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Células Clonales , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Resistencia a Mixovirus/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Regulación hacia Arriba
9.
Cell Stem Cell ; 22(2): 146-147, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395050

RESUMEN

Muscle stem cell regenerative capacity is rapidly lost during ex vivo culture. In this issue of Cell Stem Cell, Judson et al. (2018) show that inhibition of cytoplasmic SETD7, a lysine methyltransferase, potently expands naive, undifferentiated mouse and human muscle stem cells by restricting their progression through the myogenic program.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Desarrollo de Músculos , Animales , Humanos , Ratones , Mioblastos , Proteína Metiltransferasas , Células Madre
10.
Curr Top Dev Biol ; 126: 67-98, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29305004

RESUMEN

Translational control of genes that code for protein allows a cell to rapidly respond to changes in its environment, in part because translational control of gene expression does not depend on upstream events required to produce an mRNA molecule. The importance of translational control has been highlighted by studies concerning muscle development, regeneration, and disease. Translational control of specific mRNAs is achieved by microRNAs and RNA-binding proteins, which are particularly relevant to developmental myogenesis, where they ensure the stepwise differentiation of multipotent progenitors to committed myogenic progenitors that ultimately fuse into slow- or fast-type myofibers that make up skeletal muscle. The importance of translational control is also illustrated in muscle disease, where deregulated microRNA expression accelerates or delays progression of disease. Skeletal muscle is also unique for its remarkable capacity to regenerate after injury, which requires the activity of quiescent muscle stem cells, named satellite cells for their position underneath the basal lamina of the myofiber. Mitotically quiescent satellite cells are primed to activate the cell cycle and myogenic program, a unique feature that requires specific regulation of mRNA translation converging with pathways that regulate global protein synthesis. Emerging concepts in translational control of gene expression have shed light on multiple layers of control over the myogenic program. In parallel, the development and regeneration of skeletal muscle represents a unique, relevant, and highly defined context within which new concepts in translational control of gene expression should emerge.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Biosíntesis de Proteínas , Regeneración/genética , Animales , Humanos , MicroARNs/genética , Modelos Genéticos , Músculo Esquelético/fisiología , Enfermedades Musculares/fisiopatología
11.
Skelet Muscle ; 7(1): 18, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28882193

RESUMEN

BACKGROUND: Regeneration of adult tissues relies on adult stem cells that are primed to enter a differentiation program, while typically remaining quiescent. In mouse skeletal muscle, these features are reconciled by multiple translational control mechanisms that ensure primed muscle stem cells (MuSCs) are not activated. In quiescent MuSCs, this concept is illustrated by reversible microRNA silencing of Myf5 translation, mediated by microRNA-31 and fragile X mental retardation protein (FMRP). METHODS: In this work, we take advantage of FMRP knockout (Fmr1 -/- ) mice to support the role for FMRP in maintaining stem cell properties of the MuSC. We compare the activity of MuSCs in vivo after acute injury and engraftment, as well as ex vivo during culture. We use RNA immunoprecipitation and 3'UTR poly-adenine (poly(A)) length assays to assess the impact of FMRP on the stability of transcripts for myogenic regulatory factors. RESULTS: We show that RNA-binding FMRP is required to maintain the MuSC pool. More specifically, FMRP is required for stem cell properties of muscle stem cells, which include MuSC capacity to prime the myogenic program, their self-renewal, and their capacity to efficiently regenerate muscle. We provide evidence that FMRP regulation of MuSC activity occurs in part by the capacity of FMRP to directly bind Myf5 transcripts and impact rates of Myf5 deadenylation. CONCLUSIONS: Our results provide further evidence supporting a role for post-transcriptional silencing platforms by RNA-binding proteins in maintaining stemness properties of adult stem cells. In addition, deregulated MuSC activity in the absence of Fmr1 may have implications for fragile X syndrome, which is associated with muscle hypotonia during infancy.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Estabilidad del ARN , Animales , Células Cultivadas , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Desarrollo de Músculos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos/citología , Factor 5 Regulador Miogénico/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración
12.
J Pathol ; 241(2): 264-272, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27762447

RESUMEN

Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Desarrollo de Músculos/fisiología , Músculo Esquelético/patología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular/fisiología , Humanos
13.
Cell Rep ; 14(6): 1528-1539, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26854227

RESUMEN

Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Músculo Esquelético/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Femenino , Regulación de la Expresión Génica , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Proteína-Arginina N-Metiltransferasas/deficiencia , Células Satélite del Músculo Esquelético/citología , Transducción de Señal , Células Madre/citología , ADN Metiltransferasa 3B
14.
Cell Stem Cell ; 18(1): 79-90, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26549106

RESUMEN

Regeneration of adult tissues depends on somatic stem cells that remain quiescent yet are primed to enter a differentiation program. The molecular pathways that prevent activation of these cells are not well understood. Using mouse skeletal muscle stem cells as a model, we show that a general repression of translation, mediated by the phosphorylation of translation initiation factor eIF2α at serine 51 (P-eIF2α), is required to maintain the quiescent state. Skeletal muscle stem cells unable to phosphorylate eIF2α exit quiescence, activate the myogenic program, and differentiate, but do not self-renew. P-eIF2α ensures in part the robust translational silencing of accumulating mRNAs that is needed to prevent the activation of muscle stem cells. Additionally, P-eIF2α-dependent translation of mRNAs regulated by upstream open reading frames (uORFs) contributes to the molecular signature of stemness. Pharmacological inhibition of eIF2α dephosphorylation enhances skeletal muscle stem cell self-renewal and regenerative capacity.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/metabolismo , Sistemas de Lectura Abierta , Fosforilación , ARN Mensajero/metabolismo
15.
Cell Stem Cell ; 11(1): 118-26, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22770245

RESUMEN

Regeneration of adult tissues depends on stem cells that are primed to enter a differentiation program, while remaining quiescent. How these two characteristics can be reconciled is exemplified by skeletal muscle in which the majority of quiescent satellite cells transcribe the myogenic determination gene Myf5, without activating the myogenic program. We show that Myf5 mRNA, together with microRNA-31, which regulates its translation, is sequestered in mRNP granules present in the quiescent satellite cell. In activated satellite cells, mRNP granules are dissociated, relative levels of miR-31 are reduced, and Myf5 protein accumulates, which initially requires translation, but not transcription. Conditions that promote the continued presence of mRNP granules delay the onset of myogenesis. Manipulation of miR-31 levels affects satellite cell differentiation ex vivo and muscle regeneration in vivo. We therefore propose a model in which posttranscriptional mechanisms hold quiescent stem cells poised to enter a tissue-specific differentiation program.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , MicroARNs/metabolismo , Desarrollo de Músculos , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Ribonucleoproteínas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica , Ratones , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regeneración/genética
16.
Dev Biol ; 357(1): 165-78, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21749861

RESUMEN

Pitx2 is a paired-related homeobox gene that is expressed in muscle progenitors during myogenesis. We have previously demonstrated that overexpression of Pitx2c isoform in myoblasts maintained these cells with a high proliferative capacity and completely blocked terminal differentiation by inducing high Pax3 expression levels (Martinez et al., 2006). We now report that Pitx2c-mediated proliferation vs. differentiation effect is maintained during in vivo myogenesis. In vivo Pitx2c loss of function leads to a decrease in Pax3+/Pax7- cell population in the embryo accompanied by an increase of Pax3+/Pax7+ cells. Pitx2c transient-transfection experiments further supported the notion that Pitx2c can modulate Pax3/Pax7 expression. Pitx2c but not Pitx3 controls Pax3/Pax7 expression, although redundant roles are elicited at the terminal myoblast differentiation. Contrary to Pitx2c, Pitx3 does not regulate cell proliferation or Pax3 expression, demonstrating the specificity of Pitx2c mediating these actions in myoblasts. Furthermore we demonstrated that Pitx2c modulates Pax3 by repressing miR27 expression and that Pax3-miR-27 modulation mediated by Pitx2c is independent of Pitx2c effects on cell proliferation. Therefore, this study sheds light on previously unknown function of Pitx2c balancing the different myogenic progenitor populations during myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción/genética , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteína del Homeodomínio PITX2
17.
Cardiovasc Res ; 89(1): 98-108, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20736237

RESUMEN

AIMS: non-coding RNA has been recently demonstrated to be a novel mechanism for modulation of gene expression at the post-transcriptional level. The importance of microRNAs in the cardiovascular system is now apparent. Mutations of distinct microRNAs have provided evidence for fundamental roles of microRNAs during cardiovascular development. However, there is limited information about global microRNA profiles during mouse heart development. In this study, we have gained insight from the expression profiles of microRNAs during mouse ventricular development by microarray and qRT-PCR analysis. METHODS AND RESULTS: our microarray analysis reveals that relatively few microRNAs display either increasing or decreasing expression profiles during ventricular chamber formation. Interestingly, most of the differentially expressed microRNAs display a rather discrete peak of expression at particular developmental stages. Furthermore, we demonstrate that microRNA-27b (miR-27b) displays an overt myocardial expression during heart development and that the transcription factor-encoding gene Mef2c is an miR-27b target. CONCLUSION: our data present a comprehensive profile of microRNA expression during ventricular maturation, providing an entry point for investigation of the functional roles of the most abundantly and differentially expressed microRNAs during cardiogenesis.


Asunto(s)
Corazón Fetal/embriología , Corazón Fetal/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores Reguladores Miogénicos/genética , Animales , Secuencia de Bases , Células Cultivadas , Secuencia Conservada , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Hibridación in Situ , Factores de Transcripción MEF2 , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Homología de Secuencia de Ácido Nucleico
18.
Cell Metab ; 12(5): 425-6, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21035752

RESUMEN

Deregulation of microRNAs in dystrophic muscle highlights their importance in muscle homeostasis. A recent study in Cell Metabolism (Cacchiarelli et al., 2010) shows that the presence of functional dystrophin is required for NO-dependent nitrosylation of the HDAC2 repressor and subsequent activation of a group of microRNAs required for muscle function.

20.
Proc Natl Acad Sci U S A ; 106(32): 13383-7, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19666532

RESUMEN

Skeletal muscle stem cells are regulated by Pax3/7. During development, Pax3 is required for the maintenance of these cells in the somite and their migration to sites of myogenesis; high levels of Pax3 interfere with muscle cell differentiation, both in the embryo and in the adult. Quantitative fine-tuning of Pax3 is critical, and microRNAs provide a potential mechanism. We identify microRNA-27b (miR-27b), which directly targets the 3'-UTR of Pax3 mRNA, as such a regulator. miR-27b is expressed in the differentiating skeletal muscle of the embryonic myotome and in activated satellite cells of adult muscle. In vivo overexpression of a miR-27b transgene in Pax3-positive cells in the embryo leads to down-regulation of Pax3, resulting in interference with progenitor cell migration and in premature differentiation. In a complementary experiment, miR-27b inhibitors were transfected into cultures of adult muscle satellite cells that normally express miR-27b at the onset of differentiation, when Pax3 protein levels undergo rapid down-regulation. Interference with miR-27b function results in continuing Pax3 expression leading to more proliferation and a delay in the onset of differentiation. Pax7 levels are not affected. Introduction of miR-27b antagomirs at a site of muscle injury in vivo also affects Pax3 expression and regeneration in vivo. We therefore conclude that miR-27b regulates Pax3 protein levels and this down-regulation ensures rapid and robust entry into the myogenic differentiation program.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Músculo Esquelético/citología , Factores de Transcripción Paired Box/genética , Células Madre/citología , Células Madre/metabolismo , Regiones no Traducidas 3'/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , Datos de Secuencia Molecular , Músculo Esquelético/fisiología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Somitos/embriología , Somitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...