Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Genom ; 4(1): 100444, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190106

RESUMEN

Immune checkpoint blockade (ICB) therapy targeting cytotoxic T-lymphocyte-associated protein 4, programmed death 1, and programmed death ligand 1 has shown durable remission and clinical success across different cancer types. However, patient outcomes vary among disease indications. Studies have identified prognostic biomarkers associated with immunotherapy response and patient outcomes derived from diverse data types, including next-generation bulk and single-cell DNA, RNA, T cell and B cell receptor sequencing data, liquid biopsies, and clinical imaging. Owing to inter- and intra-tumor heterogeneity and the immune system's complexity, these biomarkers have diverse efficacy in clinical trials of ICB. Here, we review the genetic and genomic signatures and image features of ICB studies for pan-cancer applications and specific indications. We discuss the advantages and disadvantages of computational approaches for predicting immunotherapy effectiveness and patient outcomes. We also elucidate the challenges of immunotherapy prognostication and the discovery of novel immunotherapy targets.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Biomarcadores , Inmunoterapia/métodos , Linfocitos T
3.
Proc Natl Acad Sci U S A ; 120(49): e2316763120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011567

RESUMEN

Immune escape is a prerequisite for tumor growth. We previously described a decline in intratumor activated cytotoxic T cells and T cell receptor (TCR) clonotype diversity in invasive breast carcinomas compared to ductal carcinoma in situ (DCIS), implying a central role of decreasing T cell responses in tumor progression. To determine potential associations between peripheral immunity and breast tumor progression, here, we assessed the peripheral blood TCR clonotype of 485 breast cancer patients diagnosed with either DCIS or de novo stage IV disease at younger (<45) or older (≥45) age. TCR clonotype diversity was significantly lower in older compared to younger breast cancer patients regardless of tumor stage at diagnosis. In the younger age group, TCR-α clonotype diversity was lower in patients diagnosed with de novo stage IV breast cancer compared to those diagnosed with DCIS. In the older age group, DCIS patients with higher TCR-α clonotype diversity were more likely to have a recurrence compared to those with lower diversity. Whole blood transcriptome profiles were distinct depending on the TCR-α Chao1 diversity score. There were more CD8+ T cells and a more active immune environment in DCIS tumors of young patients with higher peripheral blood TCR-α Chao1 diversity than in those with lower diversity. These results provide insights into the role that host immunity plays in breast cancer development across different age groups.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Humanos , Anciano , Femenino , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Linfocitos T CD8-positivos/patología , Biomarcadores de Tumor/genética , Receptores de Antígenos de Linfocitos T/genética , Procesos Neoplásicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Carcinoma Ductal de Mama/patología
4.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37733448

RESUMEN

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Asunto(s)
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animales , Humanos , Ratones , Genotipo , Glioblastoma/metabolismo , Glioblastoma/patología , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicación Paracrina
5.
Nat Cell Biol ; 25(8): 1121-1134, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37460697

RESUMEN

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFß signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.


Asunto(s)
Epigénesis Genética , Histonas , Metilación , Histonas/genética , Histonas/metabolismo , Diferenciación Celular/genética , Fibroblastos/metabolismo , Linaje de la Célula/genética
6.
Cell Rep ; 42(3): 112235, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920905

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of ∼15 months. Targeted approaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tumor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-cell level could provide a measure for predicting the immune state of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Amplificación de Genes , Hibridación Fluorescente in Situ , Receptores ErbB/genética , Receptores ErbB/metabolismo , Oncogenes , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
7.
Nat Commun ; 13(1): 7558, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476730

RESUMEN

Cancer prevention has a profound impact on cancer-associated mortality and morbidity. We previously identified TGFß signaling as a candidate regulator of mammary epithelial cells associated with breast cancer risk. Here, we show that short-term TGFBR inhibitor (TGFBRi) treatment of peripubertal ACI inbred and Sprague Dawley outbred rats induces lasting changes and prevents estrogen- and carcinogen-induced mammary tumors, respectively. We identify TGFBRi-responsive cell populations by single cell RNA-sequencing, including a unique epithelial subpopulation designated secretory basal cells (SBCs) with progenitor features. We detect SBCs in normal human breast tissues and find them to be associated with breast cancer risk. Interactome analysis identifies SBCs as the most interactive cell population and the main source of insulin-IGF signaling. Accordingly, inhibition of TGFBR and IGF1R decrease proliferation of organoid cultures. Our results reveal a critical role for TGFß in regulating mammary epithelial cells relevant to breast cancer and serve as a proof-of-principle cancer prevention strategy.


Asunto(s)
Neoplasias , Ratas , Humanos , Animales , Ratas Endogámicas ACI , Ratas Sprague-Dawley
8.
Cancer Res ; 82(4): 615-631, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903604

RESUMEN

Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE: Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.


Asunto(s)
Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense , Neoplasias/genética , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Células Cultivadas , Quinasa de Punto de Control 2/metabolismo , Femenino , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Neoplasias/enzimología , Linaje , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Factores de Riesgo
9.
NPJ Precis Oncol ; 5(1): 85, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548623

RESUMEN

Systematic collection of fresh tissues for research at the time of diagnostic image-guided breast biopsy has the potential to fuel a wide variety of innovative studies. Here we report the initial experience, including safety, feasibility, and laboratory proof-of-principle, with the collection and analysis of research specimens obtained via breast core needle biopsy immediately following routine clinical biopsy at a single institution over a 14-month period. Patients underwent one or two additional core biopsies following collection of all necessary clinical specimens. In total, 395 patients were approached and 270 consented to the research study, yielding a 68.4% consent rate. Among consenting patients, 238 lesions were biopsied for research, resulting in 446 research specimens collected. No immediate complications were observed. Representative research core specimens showed high diagnostic concordance with clinical core biopsies. Flow cytometry demonstrated consistent recovery of hundreds to thousands of viable cells per research core. Among a group of HER2 + tumor research specimens, HER2 assessment by flow cytometry correlated highly with immunohistochemistry (IHC) staining, and in addition revealed extensive inter- and intra-tumoral variation in HER2 levels of potential clinical relevance. Suitability for single-cell transcriptomic analysis was demonstrated for a triple-negative tumor core biopsy, revealing substantial cellular diversity in the tumor immune microenvironment, including a prognostically relevant T cell subpopulation. Thus, collection of fresh tissues for research purposes at the time of diagnostic breast biopsy is safe, feasible and efficient, and may provide a high-yield mechanism to generate a rich tissue repository for a wide variety of cross-disciplinary research.

10.
Genes Dev ; 35(17-18): 1209-1228, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34413137

RESUMEN

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Asunto(s)
Desarrollo de Músculos , Proteína MioD , Animales , Diferenciación Celular/genética , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos/metabolismo , Células Madre/metabolismo
11.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33886505

RESUMEN

Despite the availability of multiple human epidermal growth factor receptor 2-targeted (HER2-targeted) treatments, therapeutic resistance in HER2+ breast cancer remains a clinical challenge. Intratumor heterogeneity for HER2 and resistance-conferring mutations in the PIK3CA gene (encoding PI3K catalytic subunit α) have been investigated in response and resistance to HER2-targeting agents, while the role of divergent cellular phenotypes and tumor epithelial-stromal cell interactions is less well understood. Here, we assessed the effect of intratumor cellular genetic heterogeneity for ERBB2 (encoding HER2) copy number and PIK3CA mutation on different types of neoadjuvant HER2-targeting therapies and clinical outcome in HER2+ breast cancer. We found that the frequency of cells lacking HER2 was a better predictor of response to HER2-targeted treatment than intratumor heterogeneity. We also compared the efficacy of different therapies in the same tumor using patient-derived xenograft models of heterogeneous HER2+ breast cancer and single-cell approaches. Stromal determinants were better predictors of response than tumor epithelial cells, and we identified alveolar epithelial and fibroblastic reticular cells as well as lymphatic vessel endothelial hyaluronan receptor 1-positive (Lyve1+) macrophages as putative drivers of therapeutic resistance. Our results demonstrate that both preexisting and acquired resistance to HER2-targeting agents involve multiple mechanisms including the tumor microenvironment. Furthermore, our data suggest that intratumor heterogeneity for HER2 should be incorporated into treatment design.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/genética , Resistencia a Antineoplásicos/genética , Células Epiteliales/metabolismo , Macrófagos/metabolismo , Receptor ErbB-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Variaciones en el Número de Copia de ADN , Femenino , Fibroblastos/metabolismo , Humanos , Persona de Mediana Edad , Mutación , Trasplante de Neoplasias , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo
12.
BMC Evol Biol ; 20(1): 89, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32689942

RESUMEN

BACKGROUND: Tumors are widely recognized to progress through clonal evolution by sequentially acquiring selectively advantageous genetic alterations that significantly contribute to tumorigenesis and thus are termned drivers. Some cancer drivers, such as TP53 point mutation or EGFR copy number gain, provide exceptional fitness gains, which, in time, can be sufficient to trigger the onset of cancer with little or no contribution from additional genetic alterations. These key alterations are called superdrivers. RESULTS: In this study, we employ a Wright-Fisher model to study the interplay between drivers and superdrivers in tumor progression. We demonstrate that the resulting evolutionary dynamics follow global clonal expansions of superdrivers with periodic clonal expansions of drivers. We find that the waiting time to the accumulation of a set of superdrivers and drivers in the tumor cell population can be approximated by the sum of the individual waiting times. CONCLUSIONS: Our results suggest that superdriver dynamics dominate over driver dynamics in tumorigenesis. Furthermore, our model allows studying the interplay between superdriver and driver mutations both empirically and theoretically.


Asunto(s)
Evolución Clonal/genética , Mutación/genética , Evolución Biológica , Progresión de la Enfermedad , Humanos , Neoplasias/genética , Mutación Puntual , Factores de Tiempo
13.
Nat Commun ; 10(1): 4182, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519911

RESUMEN

Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-invasive to invasive breast tumor progression, yet their differentiation and perturbation in ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers, myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63 and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1 germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be associated with invasive progression.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Carcinoma Ductal de Mama/metabolismo , Mutación/genética , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Ductal de Mama/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Mutación de Línea Germinal/genética , Humanos , Inmunohistoquímica , Ratones , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Nat Cell Biol ; 21(7): 879-888, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31263265

RESUMEN

Most human tumours are heterogeneous, composed of cellular clones with different properties present at variable frequencies. Highly heterogeneous tumours have poor clinical outcomes, yet the underlying mechanism remains poorly understood. Here, we show that minor subclones of breast cancer cells expressing IL11 and FIGF (VEGFD) cooperate to promote metastatic progression and generate polyclonal metastases composed of driver and neutral subclones. Expression profiling of the epithelial and stromal compartments of monoclonal and polyclonal primary and metastatic lesions revealed that this cooperation is indirect, mediated through the local and systemic microenvironments. We identified neutrophils as a leukocyte population stimulated by the IL11-expressing minor subclone and showed that the depletion of neutrophils prevents metastatic outgrowth. Single-cell RNA-seq of CD45+ cell populations from primary tumours, blood and lungs demonstrated that IL11 acts on bone-marrow-derived mesenchymal stromal cells, which induce pro-tumorigenic and pro-metastatic neutrophils. Our results indicate key roles for non-cell-autonomous drivers and minor subclones in metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/patología , Neutrófilos/metabolismo , Microambiente Tumoral , Animales , Carcinogénesis/metabolismo , Progresión de la Enfermedad , Humanos , Pulmón/patología , Neoplasias Pulmonares/secundario , Células Madre Mesenquimatosas/citología
15.
Cell Rep ; 27(13): 3972-3987.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242427

RESUMEN

Cancer extracellular vesicles (EVs) are highly heterogeneous, which impedes our understanding of their function as intercellular communication agents and biomarkers. To deconstruct this heterogeneity, we analyzed extracellular RNAs (exRNAs) and extracellular proteins (exPTNs) from size fractionation of large, medium, and small EVs and ribonucleoprotein complexes (RNPs) from mouse glioblastoma cells by RNA sequencing and quantitative proteomics. mRNA from medium-sized EVs most closely reflects the cellular transcriptome, whereas small EV exRNA is enriched in small non-coding RNAs and RNPs contain precisely processed tRNA fragments. The exPTN composition of EVs and RNPs reveals that they are closely related by vesicle type, independent of their cellular origin, and single EV analysis reveals that small EVs are less heterogeneous in their protein content than larger ones. We provide a foundation for better understanding of segregation of macromolecules in glioma EVs through a catalog of diverse exRNAs and exPTNs.


Asunto(s)
Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Línea Celular Tumoral , Vesículas Extracelulares/patología , Glioblastoma/patología , Ratones
16.
Cell Syst ; 8(5): 456-466.e5, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31103572

RESUMEN

The identification of molecular pathways driving cancer progression is a fundamental challenge in cancer research. Most approaches to address it are limited in the number of data types they employ and perform data integration in a sequential manner. Here, we describe ModulOmics, a method to de novo identify cancer driver pathways, or modules, by integrating protein-protein interactions, mutual exclusivity of mutations and copy number alterations, transcriptional coregulation, and RNA coexpression into a single probabilistic model. To efficiently search and score the large space of candidate modules, ModulOmics employs a two-step optimization procedure that combines integer linear programming with stochastic search. Applied across several cancer types, ModulOmics identifies highly functionally connected modules enriched with cancer driver genes, outperforming state-of-the-art methods and demonstrating the power of using multiple omics data types simultaneously. On breast cancer subtypes, ModulOmics proposes unexplored connections supported by an independent patient cohort and independent proteomic and phosphoproteomic datasets.


Asunto(s)
Biología Computacional/métodos , Neoplasias/genética , Neoplasias/metabolismo , Algoritmos , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Genómica/métodos , Humanos , Modelos Estadísticos , Mutación , Proteómica/métodos , Transducción de Señal/genética , Programas Informáticos
17.
Nat Commun ; 9(1): 3588, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181541

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intratumoral heterogeneity. To investigate the underlying biology, we conducted single-cell RNA-sequencing (scRNA-seq) of >1500 cells from six primary TNBC. Here, we show that intercellular heterogeneity of gene expression programs within each tumor is variable and largely correlates with clonality of inferred genomic copy number changes, suggesting that genotype drives the gene expression phenotype of individual subpopulations. Clustering of gene expression profiles identified distinct subgroups of malignant cells shared by multiple tumors, including a single subpopulation associated with multiple signatures of treatment resistance and metastasis, and characterized functionally by activation of glycosphingolipid metabolism and associated innate immunity pathways. A novel signature defining this subpopulation predicts long-term outcomes for TNBC patients in a large cohort. Collectively, this analysis reveals the functional heterogeneity and its association with genomic evolution in TNBC, and uncovers unanticipated biological principles dictating poor outcomes in this disease.


Asunto(s)
Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Adulto , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ganglios Linfáticos/patología , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/mortalidad
19.
Nat Commun ; 9(1): 2473, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946144

RESUMEN

Dissecting cellular differentiation hierarchies in the mammary gland is a prerequisite for understanding both normal development and malignant transformation during tumorigenesis and tumor cell-of-origin. To achieve these goals, several recent papers utilized single cell RNA-seq and lineage tracing to improve our understanding of the composition of the mammary epithelium at different developmental stages.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Animales , Diferenciación Celular , Linaje de la Célula , Transformación Celular Neoplásica , Células Epiteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Glándulas Mamarias Humanas/metabolismo , Ratones , Modelos Biológicos , Análisis de Secuencia de ARN , Células Madre/citología , Células Madre/metabolismo
20.
Sci Rep ; 7(1): 16051, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167558

RESUMEN

A key feature in the pathogenesis of OSCC is genetic instability, which results in altered expression of genes located in amplified/deleted chromosomal regions. In a previous study we have shown that the amplification of the 11q22.1-q22.2 region, encoding cIAP1 and cIAP2, is associated with lymph node metastasis and poor clinical outcome in OSCC. Here, we validate the aCGH results by nuc ish and detect a weak amplification at the 11q22.1-q22.2 locus in 37% of the 182 samples tested. We find positive correlation of 11q22.1-q22.2 amplification with lymph node metastasis, reduced survival, and increased cancer recurrence, and we observe that patients with 11q22.1-q22.2 amplification fail to respond to radiotherapy. We confirm the concurrent overexpression of cIAP1 and cIAP2 and observe differential subcellular localization of the two proteins in OSCC. To ascertain the roles of cIAP1/cIAP2 in lymph node metastasis and radioresistance, we use an in vitro pre-clinical model and confirm the role of cIAP1 in invasion and the role of cIAP2 in invasion and migration. Studies of other tumor types in which cIAP1 is overexpressed suggest that multi-regimen treatments including SMAC mimetics may be effective. Thus, the evaluation of 11q22.1-q22.2 amplifications in OSCC patients may help choose the most effective treatment.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cromosomas Humanos Par 11/genética , Amplificación de Genes , Sitios Genéticos , Metástasis Linfática/patología , Neoplasias de la Boca/genética , Tolerancia a Radiación , Adulto , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Línea Celular Tumoral , Movimiento Celular , Femenino , Dosificación de Gen , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ganglios Linfáticos/patología , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/patología , Invasividad Neoplásica , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...