Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268586

RESUMEN

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals ([~]21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268554

RESUMEN

In previously unvaccinated and uninfected individuals, non-RBD SARS-CoV-2 spike-specific B cells were prominent in two distinct, durable, resting, cross-reactive, "pre-existing" switched memory B cell compartments. While pre-existing RBD-specific B cells were extremely rare in uninfected and unvaccinated individuals, these two pre-existing switched memory B cell compartments were molded by vaccination and infection to become the primary source of RBD-specific B cells that are triggered by vaccine boosting. The frequency of wild-type RBD-binding memory B cells that cross-react with the Omicron variant RBD did not alter with boosting. In contrast, after a boost, B cells recognizing the full-length Omicron variant spike protein expanded, with pre-existing resting memory B cells differentiating almost quantitatively into effector B cell populations. B cells derived from "ancient" pre-existing memory cells and that recognize the full-length wild-type spike with the highest avidity after boosting are the B cells that also bind the Omicron variant spike protein. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=141 SRC="FIGDIR/small/21268554v1_ufig1.gif" ALT="Figure 1"> View larger version (32K): org.highwire.dtl.DTLVardef@1de97acorg.highwire.dtl.DTLVardef@b7ab7forg.highwire.dtl.DTLVardef@5c38dcorg.highwire.dtl.DTLVardef@99106c_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267755

RESUMEN

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of vaccine-induced neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that were vaccinated recently (<3 months), distantly (6-12 months), or recently boosted, and accounted for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinated individuals. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron only 4-6-fold lower than wild type, suggesting that boosters enhance the cross-reactivity of neutralizing antibody responses. In addition, we find Omicron pseudovirus is more infectious than any other variant tested. Overall, this study highlights the importance of boosters to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265988

RESUMEN

Patients with cancer are more likely to have impaired immune responses to SARS CoV-2 vaccines. We studied the breadth of responses against SARS CoV-2 variants followingly primary vaccination in 178 patients with a variety of tumor types, and after booster doses in a subset. Neutralization of alpha, beta, gamma and delta SARS-CoV-2 variants was impaired relative to wildtype (Wuhan), regardless of vaccine type. Regardless of viral variant, mRNA1273 was the most immunogenic, followed by BNT162b2 and then Ad26.COV2.S. Neutralization of more variants (breadth) was associated with higher magnitude of wildtype neutralization, and increase with time since vaccination; increased age associated with lower breadth. Anti-spike binding antibody concentrations were a good surrogate for breadth (PPV=90% at >1000U/ml). Booster SARS-CoV-2 vaccines conferred enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with current vaccines increases breadth of responses against variants.

5.
medRxiv ; 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34671780

RESUMEN

BACKGROUND: Understanding immunogenicity and effectiveness of SARS-CoV-2 vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2 or Ad26.COV2.S in ambulatory adults in Massachusetts, USA. To correlate immunogenicity with effectiveness of the three vaccines, we performed an inverse-variance meta-analysis of population level effectiveness from public health reports in >40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently negative neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients, and <50% of vaccinees demonstrate CD8+ T-cell responses to spike peptides. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of beta, gamma and delta strains were poorer regardless of vaccine. Relative to mRNA1273, the effectiveness of BNT162b2 was lower against infection and hospitalization; and Ad26COV2.S was lower against infection, hospitalization and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the three FDA EUA vaccines deployed in the USA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA