Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775128

RESUMEN

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Asunto(s)
Lactuca , Nitrógeno , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Multiómica
2.
Plants (Basel) ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840057

RESUMEN

Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), ß-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.

3.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36670969

RESUMEN

Protein hydrolysate biostimulants are environmentally friendly options for the reduction of nitrogen input, but their plant growth-promoting mechanisms are still not completely unveiled. Here, to put the "signaling peptide theory" to the test, a greenhouse experiment was undertaken using low (1 mM) and optimal (8 mM) NO3-treated butterhead lettuce and three molecular fractions (PH1 (>10 kDa), PH2 (1−10 kDa) and PH3 (<10 kDa) fractions), in addition to the whole product Vegamin®: PH, in a randomized block design. PH1 and PH3 significantly increased fresh yield (+8%) under optimal (lighter leaves), but not under low (darker leaves) NO3 conditions. Total ascorbic acid, lutein and ß-carotene increased with PH3, and disinapoylgentobiose and kaempferol-3-hydroxyferuloyl-sophorosie-7-glucoside content increased with PH (whole/fractions) treatments, particularly under low NO3 conditions. The complete hydrolysate and analyzed peptide fractions have differential biostimulatory effects, enhancing the growth and nutritional quality of lettuce.

4.
Biomolecules ; 11(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34439770

RESUMEN

Climate change is a pressing matter of anthropogenic nature to which agriculture contributes by abusing production inputs such as inorganic fertilizers and fertigation water, thus degrading land and water sources. Moreover, as the increase in the demand of food in 2050 is estimated to be 25 to 70% more than what is currently produced today, a sustainable intensification of agriculture is needed. Biostimulant substances are products that the EU states work by promoting growth, resistance to plant abiotic stress, and increasing produce quality, and may be a valid strategy to enhance sustainable agricultural practice. Presented in this review is a comprehensive look at the scientific literature regarding the widely used and EU-sanctioned biostimulant substances categories of silicon, seaweed extracts, protein hydrolysates, and humic substances. Starting from their origin, the modulation of plants' hormonal networks, physiology, and stress defense systems, their in vivo effects are discussed on some of the most prominent vegetable species of the popular plant groupings of cucurbits, leafy greens, and nightshades. The review concludes by identifying several research areas relevant to biostimulant substances to exploit and enhance the biostimulant action of these substances and signaling molecules in horticulture.


Asunto(s)
Agricultura/métodos , Agricultura/tendencias , Cucurbita/crecimiento & desarrollo , Fertilizantes , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Solanum/efectos de los fármacos , Verduras , Cambio Climático , Cucurbita/efectos de los fármacos , Sustancias Húmicas , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Hidrolisados de Proteína , Especies Reactivas de Oxígeno , Algas Marinas , Silicatos , Silicio/química
5.
Plants (Basel) ; 10(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207907

RESUMEN

Lettuce (Lactuca sativa L.) is a winter-spring leafy vegetable, but the high demand for fresh products available year-round requires off-season production. However, the warm climate of the Mediterranean areas can impair the summer production of lettuce, thus requiring the adoption of genotypes tolerant to high irradiance as well as useful agronomic strategies like shading net installations. The aim of our research was to assess the leaf morpho-physiological and anatomical changes, in addition to productive responses, of four lettuce cultivars ('Ballerina', 'Maravilla De Verano Canasta', 'Opalix', and 'Integral') grown under shading and non-shading conditions to unveil the adaptive mechanisms of this crop in response to sub-optimal microclimate (high irradiance and temperature) in a protected environment. Growth and yield parameters, leaf gas exchanges, chlorophyll fluorescence and morpho-anatomical leaf traits (i.e., leaf mass area, stomatal density and epidermal cell density) were determined. Under shading conditions, the fresh yields of the cultivars 'Ballerina', 'Opalix' ('Oak leaf') and 'Integral' ('Romaine') increased by 16.0%, 26.9% and 13.2% respectively, compared to non-shading conditions while both abaxial and adaxial stomatal density decreased. In contrast, 'Canasta' under non-shading conditions increased fresh yield, dry biomass and instantaneous water use efficiency by 9.6%, 18.0% and 15.7%, respectively, while reduced abaxial stomatal density by 30.4%, compared to shading conditions. Regardless of cultivar, the unshaded treatment increased the leaf mass area by 19.5%. Even though high light intensity and high temperature are critical limiting factors for summer lettuce cultivation in a protected environment, 'Canasta' showed the most effective adaptive mechanisms and had the best production performance under sub-optimal microclimatic conditions. However, greenhouse coverage with a white shading net (49% screening) proved to be a suitable agricultural practice that ensured an adequate microclimate for the off-season growth of more sensitive cultivars 'Ballerina', 'Oak leaf' and 'Romaine'.

6.
Plants (Basel) ; 9(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339286

RESUMEN

Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m-1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m-1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m-1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (-44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA