Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 44(14): 6770-86, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27174933

RESUMEN

DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Disparidad de Par Base/genética , Secuencia de Bases , Metilación de ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Conformación Proteica
2.
Elife ; 4: e06744, 2015 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-26163658

RESUMEN

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Proteínas MutL , Unión Proteica , Conformación Proteica
3.
Nat Commun ; 6: 7387, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26060179

RESUMEN

In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131-τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation.


Asunto(s)
ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/metabolismo , Cristalografía por Rayos X , ARN Polimerasa III/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción TFIII/química
4.
Nucleic Acids Res ; 40(12): 5448-64, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22367846

RESUMEN

Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS-mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand.


Asunto(s)
Disparidad de Par Base , Reparación de la Incompatibilidad de ADN , ADN/química , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/química , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Nucleótidos/química , Unión Proteica , Espectrometría de Fluorescencia
5.
Biotechniques ; 51(4): 259-62, 264-5, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21988692

RESUMEN

The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN/genética , ADN Circular/genética , ADN/genética , Vectores Genéticos/genética , Metilación de ADN/genética , Reparación del ADN/genética , ADN Circular/metabolismo , Vectores Genéticos/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Nanosferas
6.
J Biol Chem ; 286(19): 17326-37, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454657

RESUMEN

The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.


Asunto(s)
Adenosina Trifosfatasas/química , Reparación de la Incompatibilidad de ADN , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Adenosina Trifosfato/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Cisteína/química , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas MutL , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...