Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6600): 1459-1466, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737773

RESUMEN

Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.


Asunto(s)
Envejecimiento , Anfibios , Evolución Biológica , Reptiles , Anfibios/clasificación , Anfibios/fisiología , Animales , Longevidad , Filogenia , Reptiles/clasificación , Reptiles/fisiología
2.
R Soc Open Sci ; 7(4): 192146, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431890

RESUMEN

The differences in life-history traits and processes between organisms living in the same or different populations contribute to their ecological and evolutionary dynamics. We developed mixed-effect model formulations of the popular size-at-age von Bertalanffy and Gompertz growth functions to estimate individual and group variation in body growth, using as a model system four freshwater fish populations, where tagged individuals were sampled for more than 10 years. We used the software Template Model Builder to estimate the parameters of the mixed-effect growth models. Tests on data that were not used to estimate model parameters showed good predictions of individual growth trajectories using the mixed-effects models and starting from one single observation of body size early in life; the best models had R 2 > 0.80 over more than 500 predictions. Estimates of asymptotic size from the Gompertz and von Bertalanffy models were not significantly correlated, but their predictions of size-at-age of individuals were strongly correlated (r > 0.99), which suggests that choosing between the best models of the two growth functions would have negligible effects on the predictions of size-at-age of individuals. Model results pointed to size ranks that are largely maintained throughout the lifetime of individuals in all populations.

3.
J Anim Ecol ; 89(3): 921-932, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758696

RESUMEN

Intraspecific trait variability (ITV) maintains functional diversity in populations and communities, and plays a crucial role in ecological and evolutionary processes such as trophic cascades or speciation. Furthermore, functional variation within a species and its populations can help buffer against harmful environmental changes. Trait variability within species can be observed from differences among populations, and between- and within individuals. In animals, ITV can be driven by ontogeny, the environment in which populations live and by within-individual specialization or variation unrelated to growth. However, we still know little about the relative strength of these drivers in determining ITV variation in natural populations. Here, we aimed to (a) measure the relative strength of between- and within-individual effects of body size on ITV over time, and (b) disentangle the trophic changes due to ontogeny from other sources of variability, such as the environment experienced by populations and individual preferences at varying temporal and spatial scales. We used as a model system the endangered marble trout Salmo marmoratus, a freshwater fish living in a restricted geographical area (<900 km2 ) that shows marked changes in diet through ontogeny. We investigated two trophic traits, trophic position and resource use, with stable isotopes (δ15 N and δ13 C), and followed over time 238 individually tagged marble trout from six populations to estimate the trophic changes between and within individuals through ontogeny at three different time-scales (short term: 3 months, medium term: 1 year and long term: 2 years). We found that the relative strength of between- and within-individual effects of body size on trophic position and resource use change strongly over time. Both effects played a similar role in ITV over medium- and long-term time-scales, but within-individual effects were significantly driving trophic variability over short-term scales. Apart from ontogenetic shifts, individuals showed variability in trophic traits as big as the variability estimated between populations. Overall, our results show how the relative strengths of ITV drivers change over time. This study evidences the crucial importance of considering effects of time-scales on functional variability at individual, population and species levels.


Asunto(s)
Ambiente , Trucha , Animales , Evolución Biológica , Fenotipo
4.
J Fish Biol ; 93(6): 1102-1106, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30281157

RESUMEN

The hypothesis that the effects of heterozygosity vary with environmental conditions was tested using six populations of marble trout Salmo marmoratus from western Slovenia as a model system. The hypotheses tested were: stronger effects of heterozygosity on survival in populations characterized by low average survival; no effects of heterozygosity on probability of surviving flash floods owing to their largely non-selective effects across traits; stronger effects of heterozygosity on survival for fish born after floods than fish born before. A significant effect of heterozygosity on survival was found in populations characterized by low average survival. There were no effects of heterozygosity on probability of surviving flash floods, but in one population a positive correlation between heterozygosity and survival for fish born after the extreme events was found, probably because crowding in a small section of the stream caused more intense competition for resources.


Asunto(s)
Heterocigoto , Estrés Fisiológico , Trucha/genética , Animales , Inundaciones , Genotipo , Endogamia , Repeticiones de Microsatélite , Modelos Biológicos , Polimorfismo de Nucleótido Simple , Ríos , Eslovenia , Trucha/fisiología
5.
R Soc Open Sci ; 5(3): 171087, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29657746

RESUMEN

We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.

6.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28148745

RESUMEN

Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event.


Asunto(s)
Cambio Climático , Inundaciones , Variación Genética , Trucha/genética , Animales , Clima , Genética de Población , Genotipo , Dinámica Poblacional
7.
Ecol Appl ; 26(7): 2086-2102, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755735

RESUMEN

Understanding the causes of within- and among-population differences in vital rates, life histories, and population dynamics is a central topic in ecology. To understand how within- and among-population variation emerges, we need long-term studies that include episodic events and contrasting environmental conditions, data to characterize individual and shared variation, and statistical models that can tease apart shared and individual contribution to the observed variation. We used long-term tag-recapture data to investigate and estimate within- and among-population differences in vital rates, life histories, and population dynamics of marble trout Salmo marmoratus, an endemic freshwater salmonid with a narrow range. Only ten populations of pure marble trout persist in headwaters of Alpine rivers in western Slovenia. Marble trout populations are also threatened by floods and landslides, which have already caused the extinction of two populations in recent years. We estimated and determined causes of variation in growth, survival, and recruitment both within and among populations, and evaluated trade-offs between them. Specifically, we estimated the responses of these traits to variation in water temperature, density, sex, early life conditions, and extreme events. We found that the effects of population density on traits were mostly limited to the early stages of life and that growth trajectories were established early in life. We found no clear effects of water temperature on vital rates. Population density varied over time, with flash floods and debris flows causing massive mortalities (>55% decrease in survival with respect to years with no floods) and threatening population persistence. Apart from flood events, variation in population density within streams was largely determined by variation in recruitment, with survival of older fish being relatively constant over time within populations, but substantially different among populations. Marble trout show a fast to slow continuum of life histories, with slow growth associated with higher survival at the population level, possibly determined by food conditions and age at maturity. Our work provides unprecedented insight into the causes of variation in vital rates, life histories, and population dynamics in an endemic species that is teetering on the edge of extinction.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Trucha/fisiología , Envejecimiento , Animales , Monitoreo del Ambiente , Densidad de Población , Dinámica Poblacional , Eslovenia
8.
Ecol Appl ; 26(5): 1535-1552, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27755751

RESUMEN

Better understanding of variation in growth will always be an important problem in ecology. Individual variation in growth can arise from a variety of processes; for example, individuals within a population vary in their intrinsic metabolic rates and behavioral traits, which may influence their foraging dynamics and access to resources. However, when adopting a growth model, we face trade-offs between model complexity, biological interpretability of parameters, and goodness of fit. We explore how different formulations of the von Bertalanffy growth function (vBGF) with individual random effects and environmental predictors affect these trade-offs. In the vBGF, the growth of an organism results from a dynamic balance between anabolic and catabolic processes. We start from a formulation of the vBGF that models the anabolic coefficient (q) as a function of the catabolic coefficient (k), a coefficient related to the properties of the environment (γ) and a parameter that determines the relative importance of behavior and environment in determining growth (ψ). We treat the vBGF parameters as a function of individual random effects and environmental variables. We use simulations to show how different functional forms and individual or group variability in the growth function's parameters provide a very flexible description of growth trajectories. We then consider a case study of two fish populations of Salmo marmoratus and Salmo trutta to test the goodness of fit and predictive power of the models, along with the biological interpretability of vBGF's parameters when using different model formulations. The best models, according to AIC, included individual variability in both k and γ and cohort as predictor of growth trajectories, and are consistent with the hypothesis that habitat selection is more important than behavioral and metabolic traits in determining lifetime growth trajectories of the two fish species. Model predictions of individual growth trajectories were largely more accurate than predictions based on mean size-at-age of fish. Our method shares information across individuals, and thus, for both fish populations investigated, allows using a single measurement early in the life of individual fish or cohort to obtain accurate predictions of lifetime individual or cohort size-at-age.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Trucha/crecimiento & desarrollo , Envejecimiento , Animales
9.
Mol Ecol ; 25(4): 929-42, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26479867

RESUMEN

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.


Asunto(s)
Anfibios/clasificación , Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Peces/clasificación , Anfibios/genética , Animales , Cartilla de ADN , ADN Mitocondrial/genética , Ecosistema , Monitoreo del Ambiente , Peces/genética , Agua Dulce , Océanos y Mares
10.
PLoS Comput Biol ; 10(9): e1003828, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25211603

RESUMEN

The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.


Asunto(s)
Teorema de Bayes , Biología Computacional/métodos , Crecimiento y Desarrollo , Modelos Biológicos , Animales , Tamaño Corporal , Modelos Estadísticos , Trucha/crecimiento & desarrollo
11.
Int J Mol Sci ; 14(12): 23454-70, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24287917

RESUMEN

The Balkans are known to have a high level of biodiversity and endemism. No less than 15 taxa have been recorded in salmonids of the Salmo genus. Among them, the Prespa trout is found in only four river systems flowing into Lake Macro Prespa, three in the Former Yugoslav Republic of Macedonia and one in Greece. This is the first comprehensive survey of all streams located within the Macro Prespa Basin, encompassing the whole taxon range. A large genetic sample of 536 Prespa trout was collected mainly between 2005 and 2007. The sampling included 59 individuals from the Golema river system, 93 from the Kranska, 260 from the Brajcinska, 119 from the Agios Germanos, and five individuals from the lake itself. These specimens were analyzed with six microsatellite markers and by sequencing the mitochondrial control region. Nuclear data were examined through multidimensional analysis and assignment tests. Five clusters were detected by assignment: Golema, Kranska, Brajcinska upstream, Rzanska Brajcinska tributary and Brajcinska downstream. Most of these river systems thus hosted differentiated Prespa trout populations (with past gene flows likely dating before the construction of dams), except Agios Germanos, which was found to be composed of 5% to 32% of each cluster. Among the five trout individuals from the lake, four originated from Kranska River and one was admixed. Supported parsimonious hypotheses are proposed to explain these specificities. Conservation of this endemic taxon should take these results into account. No translocation should be performed between different tributaries of the lake and preservation of the Brajcinska populations should address the upstream-downstream differentiation described.


Asunto(s)
Variación Genética , Trucha/genética , Alelos , Animales , Peninsula Balcánica , ADN/análisis , ADN Mitocondrial/análisis , Genotipo , Haplotipos , Repeticiones de Microsatélite , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Trucha/clasificación
12.
Proc Biol Sci ; 280(1754): 20122916, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23325776

RESUMEN

Quantifying the fitness cost that parasites impose on wild hosts is a challenging task, because the epidemiological history of field-sampled hosts is often unknown. In this study, we used an internal marker of the parasite pressure on individual hosts to evaluate the costs of parasitism with respect to host body condition, size increase and reproductive potential of field-collected animals for which we also determined individual age. In our investigated system, the European eel Anguilla anguilla and the parasitic invader Anguillicoloides crassus, high virulence and severe impacts are expected because the host lacks an adaptive immune response. We demonstrated a nonlinear relationship between the severity of damage to the affected organ (i.e. the swimbladder, our internal marker) and parasite abundance and biomass, thus showing that the use of classical epidemiological parameters was not relevant here. Surprisingly, we found that the most severely affected eels (with damaged swimbladder) had greater body length and mass (+11% and +41%, respectively), than unaffected eels of same age. We discuss mechanisms that could explain this finding and other counterintuitive results in this host-parasite system, and highlight the likely importance of host panmixia in generating great inter-individual variability in growth potential and infection risk. Under that scenario, the most active foragers would not only have the greatest size increase, but also the highest probability of becoming repeatedly infected-via trophic parasite transmission-during their continental life.


Asunto(s)
Anguilla , Enfermedades de los Peces/parasitología , Nematodos/crecimiento & desarrollo , Infecciones por Nematodos/veterinaria , Sacos Aéreos/parasitología , Animales , Tamaño Corporal , Femenino , Francia , Interacciones Huésped-Parásitos , Masculino , Infecciones por Nematodos/parasitología , Estaciones del Año
13.
Oecologia ; 168(2): 393-404, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21837409

RESUMEN

Optimal life histories in a fluctuating environment are likely to differ from those that are optimal in a constant environment, but we have little understanding of the consequences of bounded fluctuations versus episodic massive mortality events. Catastrophic disturbances, such as floods, droughts, landslides and fires, substantially alter the population dynamics of affected populations, but little has been done to investigate how catastrophes may act as a selective agent for life-history traits. We use an individual-based model of population dynamics of the stream-dwelling salmonid marble trout (Salmo marmoratus) to investigate how trade-offs between the growth and mortality of individuals and density-dependent body growth can lead to the maintenance of a wide or narrow range of individual variation in body growth rates in environments that are constant (i.e., only demographic stochasticity), variable (i.e., environmental stochasticity), or variable with catastrophic events that cause massive mortalities (e.g., flash floods). We find that occasional episodes of massive mortality can substantially reduce persistent variability in individual growth rates. Lowering the population density reduces density dependence and allows for higher fitness of more opportunistic strategies (rapid growth and early maturation) during the recovery period.


Asunto(s)
Inundaciones , Trucha/fisiología , Animales , Tamaño Corporal , Femenino , Densidad de Población , Dinámica Poblacional , Reproducción , Estaciones del Año , Trucha/anatomía & histología , Trucha/crecimiento & desarrollo , Movimientos del Agua
14.
PLoS One ; 6(9): e23822, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931617

RESUMEN

A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F(ST) of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3-4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change.


Asunto(s)
Inundaciones , Salmonidae/genética , Animales , Desastres , Inundaciones/mortalidad , Sitios Genéticos/genética , Variación Genética , Repeticiones de Microsatélite/genética , Filogenia , Dinámica Poblacional
15.
Naturwissenschaften ; 98(1): 57-66, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21088818

RESUMEN

To understand the consequences of the invasion of the nonnative rainbow trout Oncorhynchus mykiss on the native marble trout Salmo marmoratus, we compared two distinct headwater sectors where marble trout occur in allopatry (MTa) or sympatry (MTs) with rainbow trout (RTs) in the Idrijca River (Slovenia). Using data from field surveys from 2002 to 2009, with biannual (June and September) sampling and tagging from June 2004 onwards, we analyzed body growth and survival probabilities of marble trout in each stream sector. Density of age-0 in September over the study period was greater for MTs than MTa and very similar between MTs and RTs, while density of trout ≥age-1 was similar for MTa and MTs and greater than density of RTs. Monthly apparent survival probabilities were slightly higher in MTa than in MTs, while RTs showed a lower survival than MTs. Mean weight of marble and rainbow trout aged 0+ in September was negatively related to cohort density for both marble and rainbow trout, but the relationship was not significantly different between MTs and MTa. No clear depression of body growth of sympatric marble trout between sampling intervals was observed. Despite a later emergence, mean weight of RTs cohorts at age 0+ in September was significantly higher than weight of both MTs and MTa. The establishment of a self-sustaining population of rainbow trout does not have a significant impact on body growth and survival probabilities of sympatric marble trout. The numerical dominance of rainbow trout in streams at lower altitudes seem to suggest that while the low summer flow pattern of Slovenian streams is favorable for rainbow trout invasion, the adaptation of marble trout to headwater environments may limit the invasion success of rainbow trout in headwaters.


Asunto(s)
Oncorhynchus mykiss/fisiología , Ríos , Trucha/fisiología , Distribución por Edad , Animales , Tamaño Corporal/fisiología , Oncorhynchus mykiss/crecimiento & desarrollo , Densidad de Población , Eslovenia , Análisis de Supervivencia , Trucha/crecimiento & desarrollo
16.
Genet Sel Evol ; 41: 22, 2009 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-19284692

RESUMEN

To determine the genetic architecture of trout in Albania, 87 individuals were collected from 19 riverine and lacustrine sites in Albania, FYROM and Greece. All individuals were analyzed for sequence variation in the mtDNA control region. Among fourteen haplotypes detected, four previously unpublished haplotypes, bearing a close relationship to haplotypes of the Adriatic and marmoratus lineages of Salmo trutta, were revealed. Ten previously described haplotypes, characteristic of S. ohridanus, S. letnica and the Adriatic and Mediterranean lineages of S. trutta, were also detected. Haplotypes detected in this study were placed in a well supported branch of S. ohridanus, and a cluster of Mediterranean-Adriatic-marmoratus haplotypes, which were further delimited into three subdivisions of Mediterranean, marmoratus, and a previously non-described formation of four Adriatic haplotypes (Balkan cluster). Haplotypes of the Balkan cluster and the other Adriatic haplotypes, do not represent a contiguous haplotype lineage and appear not to be closely related, indicating independent arrivals into the Adriatic drainage and suggesting successive colonization events. Despite the presence of marmoratus haplotypes in Albania, no marbled phenotype was found, confirming previously reported findings that there is no association between this phenotype and marmoratus haplotypes.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Trucha/genética , Albania , Animales , Haplotipos , Filogenia , Trucha/clasificación
17.
Oecologia ; 156(3): 523-34, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18386068

RESUMEN

Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.


Asunto(s)
Agua Dulce , Trucha/crecimiento & desarrollo , Animales , Tamaño Corporal , Tamaño de la Nidada , Simulación por Computador , Desastres , Densidad de Población , Dinámica Poblacional
18.
Oecologia ; 75(4): 587-592, 1988 May.
Artículo en Inglés | MEDLINE | ID: mdl-28312435

RESUMEN

This paper is the second of three studies of a natural hybrid,Rutilus rubilioxAlburnus alburnus found in Lake Mikri Prespa in Northern Greece. It compares the parasite load of the hybrid to that of its parents, focussing onDactylogyrus spp.,Diplozoon sp.,Bolbophorus confusus andPomphorhynchus bosniacus. The hybrid's gill tissue is parasitised almost exclusively by the parentalDactylogyrus. It follows that theDactylogyrus group constitutes an excellent biological marker for hybridisation. Furthermore, the hybrid is characterised by the following two features: 1. high susceptibility to parasitic infections, 2. important role of ecological components in the recruitment of parasites: for monoxenous parasites (Dactylogyrus spp.), the spatial position of the hybrid and for heteroxenous parasites (P. bosniacus), the trophic position. The parasitology of this particular hybrid may be useful as a model for the properties and fitness of hybrids in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...