Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 13(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003911

RESUMEN

Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that can lead to long-term disability. The diagnosis of MS is not simple and requires many instrumental and clinical tests. Sampling easily collected biofluids using spectroscopic approaches is becoming of increasing interest in the medical field to integrate and improve diagnostic procedures. Here we present a statistical approach where we combine a number of spectral biomarkers derived from the ATR-FTIR spectra of blood plasma samples of healthy control subjects and MS patients, to obtain a linear predictor useful for discriminating between the two groups of individuals. This predictor provides a simple tool in which the contribution of different molecular components is summarized and, as a result, the sensitivity (80%) and specificity (93%) of the identification are significantly improved compared to those obtained with typical classification algorithms. The strategy proposed can be very helpful when applied to the diagnosis of diseases whose presence is reflected in a minimal way in the analyzed biofluids (blood and its derivatives), as it is for MS as well as for other neurological disorders.

2.
Cells ; 12(7)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37048116

RESUMEN

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Asunto(s)
Miocitos Cardíacos , Palmitatos , Palmitatos/toxicidad , Palmitatos/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo
3.
Sci Rep ; 13(1): 2565, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782055

RESUMEN

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases showing various symptoms both of physical and cognitive type. In this work, we used attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy to analyze plasma samples for discriminating MS patients from healthy control individuals, and identifying potential spectral biomarkers helping the diagnosis through a quick non-invasive blood test. The cohort of the study consists of 85 subjects, including 45 MS patients and 40 healthy controls. The differences in the spectral features both in the fingerprint region (1800-900 cm-1) and in the high region (3050-2800 cm-1) of the infrared spectra were highlighted also with the support of different chemometric methods, to capture the most significant wavenumbers for the differentiation. The results show an increase in the lipid/protein ratio in MS patients, indicating changes in the level (metabolism) of these molecular components in the plasma. Moreover, the multivariate tools provided a promising rate of success in the diagnosis, with 78% sensitivity and 83% specificity obtained through the random forest model in the fingerprint region. The MS diagnostic tools based on biomarkers identification on blood (and blood component, like plasma or serum) are very challenging and the specificity and sensitivity values obtained in this work are very encouraging. Overall, the results obtained suggest that ATR-FTIR spectroscopy on plasma samples, requiring minimal or no manipulation, coupled with statistical multivariate approaches, is a promising analytical tool to support MS diagnosis through the identification of spectral biomarkers.


Asunto(s)
Esclerosis Múltiple , Plasma , Espectroscopía Infrarroja por Transformada de Fourier , Humanos , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Análisis Multivariante , Plasma/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Biomarcadores/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...