Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2306816121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38266047

RESUMEN

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.


Asunto(s)
Esclerosis Múltiple , Fragmentos de Péptidos , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Ratones , Ratas , Astrocitos , Fibronectinas/genética , Clorhidrato de Fingolimod/farmacología , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Proteómica , Inhibidor Tisular de Metaloproteinasa-1/genética
2.
Immunol Invest ; 53(1): 26-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981468

RESUMEN

Astrocyte-derived extracellular vesicles (ADEVs) have garnered attention as a fundamental mechanism of intercellular communication in health and disease. In the context of neurological diseases, for which prodromal diagnosis would be advantageous, ADEVs are also being explored for their potential utility as biomarkers. In this review, we provide the current state of data supporting our understanding on the manifold roles of ADEVs in several common neurological disorders. We also discuss these findings from a unique emerging perspective that ADEVs represent a means by which the central nervous system may broadcast influence over other systems in the body to affect neuroinflammatory processes, with both dual potential to either propagate illness or restore health and homeostasis.


Asunto(s)
Astrocitos , Vesículas Extracelulares , Humanos , Comunicación Celular , Biomarcadores
3.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310382

RESUMEN

Globoid cell leukodystrophy (GLD) or Krabbe's disease is a fatal genetic demyelinating disease of the central nervous system caused by loss-of-function mutations in the galactosylceramidase (galc) gene. While the metabolic basis for disease is known, the understanding of how this results in neuropathology is not well understood. Herein, we report that the rapid and protracted elevation of CD8+ cytotoxic T lymphocytes occurs coincident with clinical disease in a mouse model of GLD. Administration of a function-blocking antibody against CD8α effectively prevented disease onset, reduced morbidity and mortality, and prevented CNS demyelination in mice. These data indicate that subsequent to the genetic cause of disease, neuropathology is driven by pathogenic CD8+ T cells, thus offering novel therapeutic potential for treatment of GLD.


Asunto(s)
Leucodistrofia de Células Globoides , Animales , Ratones , Leucodistrofia de Células Globoides/genética , Sistema Nervioso Central , Modelos Animales de Enfermedad , Anticuerpos Bloqueadores , Linfocitos T CD8-positivos
4.
bioRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824834

RESUMEN

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement: Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.

5.
Curr Opin Neurobiol ; 77: 102646, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371828

RESUMEN

The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.


Asunto(s)
Sistema Nervioso Central , Neuroglía , Sistema Nervioso Central/patología , Células Presentadoras de Antígenos , Microglía , Astrocitos
6.
Front Cell Neurosci ; 16: 833186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573828

RESUMEN

HMGB1 is a highly conserved, ubiquitous protein in eukaryotic cells. HMGB1 is normally localized to the nucleus, where it acts as a chromatin associated non-histone binding protein. In contrast, extracellular HMGB1 is an alarmin released by stressed cells to act as a danger associated molecular pattern (DAMP). We have recently determined that progenitor cells from multiple sclerosis patients exhibit a cellular senescent phenotype and release extracellular HMGB1 which directly impaired the maturation of oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes (OLs). Herein, we report that administration of recombinant HMGB1 into the spinal cord at the time of lysolecithin administration resulted in arrest of OPC differentiation in vivo, and a profound impairment of remyelination. To define the receptor by which extracellular HMGB1 mediates its inhibitory influence on OPCs to impair OL differentiation, we tested selective inhibitors against the four primary receptors known to mediate the effects of HMGB1, the toll-like receptors (TLRs)-2, -4, -9 or the receptor for advanced glycation end-products (RAGE). We found that inhibition of neither TLR9 nor RAGE increased OL differentiation in the presence of HMGB1, while inhibition of TLR4 resulted in partial restoration of OL differentiation and inhibiting TLR2 fully restored differentiation of OLs in the presence of HMGB1. Analysis of transcriptomic data (RNAseq) from OPCs identified an overrepresentation of NFκB regulated genes in OPCs when in the presence of HMGB1. We found that application of HMGB1 to OPCs in culture resulted in a rapid and concentration dependent shift in NFκB nuclear translocation which was also attenuated with coincident TLR2 inhibition. These data provide new information on how extracellular HMGB1 directly affects the differentiation potential of OPCs. Recent and past evidence for elevated HMGB1 released from senescent progenitor cells within demyelinated lesions in the MS brain suggests that a greater understanding of how this molecule acts on OPCs may unfetter the endogenous remyelination potential in MS.

7.
J Neurosci Res ; 100(9): 1707-1720, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35596557

RESUMEN

Multiple sclerosis (MS) is a chronic, progressively debilitating demyelinating disease of the central nervous system (CNS). Nearly 80% of MS patients experience lower urinary tract dysfunction early in their diagnosis. This significantly affects the quality of life, and in latter stages of disease is a leading cause of hospitalization. Previously, animal models have shown that inflammatory demyelination in the CNS causes profound bladder dysfunction, but the confounding influence of systemic inflammation limits the potential interpretation of the contribution of CNS demyelination to bladder dysfunction. Since the micturition circuit has myelinated neuronal connections in the cortex, brainstem, and spinal cord, we examined alterations in bladder function in the cuprizone model characterized by demyelinating lesions in the cortex and corpus callosum that are independent of T-cell-mediated autoimmunity. Herein, we report that a 4-week dietary cuprizone treatment in C57Bl/6J mice induced alterations in voiding behavior with increased micturition frequency and reduced volume voided, similar to human MS bladder dysfunction. Subsequently, recovery from cuprizone treatment restored normal bladder function. Demyelination and remyelination were confirmed by Luxol Fast Blue staining of the corpus callosum. Additionally, we also determined that an 8-week cuprizone treatment, resulting in chronic demyelination lacking spontaneous remyelination potential, is associated with an exacerbated voiding phenotype. Interestingly, while cuprizone-induced CNS demyelination severely affected conscious (cortical) urinary behavior, the brainstem and spinal cord reflex remained unchanged, as confirmed by urethane-anesthetized cystometry. This is the first study to show that cortical demyelination independent of inflammation can negatively impact urinary function.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Tronco Encefálico/patología , Cuerpo Calloso/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Calidad de Vida , Reflejo , Micción
8.
Lipids Health Dis ; 21(1): 32, 2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35351138

RESUMEN

BACKGROUND: Recent findings show that extracellular vesicle constituents can exert short- and long-range biological effects on neighboring cells in the brain, opening an exciting avenue for investigation in the field of neurodegenerative diseases. Although it is well documented that extracellular vesicles contain many lipids and are enriched in sphingomyelin, cholesterol, phosphatidylserines and phosphatidylinositols, no reports have addressed the lipidomic profile of brain derived EVs in the context of Metachromatic Leukodystrophy, a lysosomal storage disease with established metabolic alterations in sulfatides. METHODS: In this study, we isolated and characterized the lipid content of brain-derived EVs using the arylsulfatase A knockout mouse as a model of the human condition. RESULTS: Our results suggest that biogenesis of brain-derived EVs is a tightly regulated process in terms of size and protein concentration during postnatal life. Our lipidomic analysis demonstrated that sulfatides and their precursors (ceramides) as well as other lipids including fatty acids are altered in an age-dependent manner in EVs isolated from the brain of the knockout mouse. CONCLUSIONS: In addition to the possible involvement of EVs in the pathology of Metachromatic Leukodystrophy, our study underlines that measuring lipid signatures in EVs may be useful as biomarkers of disease, with potential application to other genetic lipidoses.


Asunto(s)
Vesículas Extracelulares , Leucodistrofia Metacromática , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patología , Lipidómica , Ratones
9.
ASN Neuro ; 14: 17590914221087817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300522

RESUMEN

Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.


Asunto(s)
Vesículas Extracelulares , Leucodistrofia de Células Globoides , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Ratones , Psicosina/análisis , Psicosina/metabolismo , Psicosina/farmacología , Esfingolípidos/metabolismo
10.
Curr Opin Pharmacol ; 63: 102184, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189476

RESUMEN

Recent studies have implicated cellular senescence as a disease-related process linked to progressive forms of multiple sclerosis (MS). Herein, we present an overview of the current pharmacopeia of cellular senescence affecting compounds and evidence for their effects, if known, in murine and cellular models of MS. Consideration is also given to the utility of these compounds for the treatment of progressive MS, with an examination of past and current clinical trials that have tested these agents, often for other purposes, in the MS patient population. Lastly, we discuss the implications and potential utility for targeting cellular senescence as a strategy to fulfil the unmet need of treatment options for the progressive MS population.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Animales , Senescencia Celular , Humanos , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico
11.
Neurosci Lett ; 772: 136480, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35093477

RESUMEN

The molecular process of cellular senescence, which is known to contribute to aging, has been implicated in several diseases of the central nervous system (CNS). The purpose of this study was to generate an unbiased survey of cellular senescence gene expression with whole brain tissues using a standardized, curated set of 88 genes associated with cellular senescence. We performed a comparative analysis of aged brains with two CNS disease models; the 5xFAD mouse model of Alzheimer's disease, and cuprizone-induced CNS demyelination. Each experimental group could be distinguished from the others by expression of unique subsets of cellular senescence genes, with minimal overlap between each group. Gene ontology analyses identified unique processes within cellular senescence among each group. To examine how these changes translate to the human condition, we interrogated gene expression data from publicly available databases of human aging and AD cases which also corroborated our finding that cellular senescence gene expression changes in AD differ significantly from healthy aging, although the changes in human did not always correlate with the murine models. These data provide important insight on the common and unique global changes in expression of cellular senescence genes in the CNS accompanying aging, injury or disease. Future studies may define, using more refined cellular assays, the specific cellular phenotype differences, and how disparate drivers of unique disease pathologies all seemingly culminate in a common activation of cellular senescence.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/genética , Senescencia Celular , Transcriptoma , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Aging Dis ; 12(6): 1462-1475, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527422

RESUMEN

Astrocytes are an abundant and dynamic glial cell exclusive to the central nervous system (CNS). In the context of injury, inflammation, and/or diseases of the nervous system, astrocyte responses, termed reactive astrogliosis, are a recognized pathological feature across a range of conditions and diseases. However, the impact of reactive astrogliosis is not uniform and varies by context and duration (time). In recent years, extracellular communication between glial cells via extracellular vesicles (EVs) has garnered interest as a process connected with reactive astrogliosis. In this review, we relate recent findings on astrocyte-derived extracellular vesicles (ADEVs) with a focus on factors that can influence the effects of ADEVs and identified age related changes in the function of ADEVs. Additionally, we will discuss the current limitations of existing experimental approaches and identify questions that highlight areas for growth in this field, which will continue to enhance our understanding of ADEVs in age-associated processes.

13.
Brain Res ; 1763: 147462, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811843

RESUMEN

Astrocytic injury responses are known to be influenced by the extracellular matrix (ECM). Astrocytes are also recognized as a source of extracellular vesicles (EVs) that can impact the activity and function of other astrocytes and cell types. Whether the ECM influences the function of astrocytic EVs in the context of wound recovery has not been previously studied. We report EVs from astrocytes cultured on varied ECM substrates are sufficient to elicit distinct injury responses in naive astrocytes that recapitulate the effects of the ECM of origin. When compared with wound recovery on control substrates, EVs from ECM-exposed astrocytes elicited accelerated rates of wound recovery that varied based on each ECM. When EVs were collected from IL-1ß treated and ECM-exposed astrocyte cultures, we found that IL-1ß arrested wound recovery in naive astrocytes treated with EVs from astrocytes cultured on ECM but adding EVs from IL-1ß treated Tenascin-c-cultured astrocytes increased wound recovery. To confirm that ECM was a primary influence on these astrocytic EV functions, we tested the contribution of ß1-integrin, a major integrin receptor for the ECM molecules tested in this study. We found that the ß1-integrin inhibitor Ha2/5, resulted in EVs that significantly attenuated the wound recovery of naive astrocytes. This provides new information on the importance of culture substrates on astrocytic responses, EV functions and injury responses that may impact the understanding of astroglial responses related to ECM compositional differences in diverse physiological states.


Asunto(s)
Astrocitos/fisiología , Matriz Extracelular/fisiología , Vesículas Extracelulares/fisiología , Cicatrización de Heridas/fisiología , Animales , Integrina beta1/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL
15.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508430

RESUMEN

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Asunto(s)
Galactosilceramidasa/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patología , Sustancia Blanca/patología , Animales , Animales Recién Nacidos , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Fibrinógeno/metabolismo , Galactosilceramidasa/metabolismo , Vectores Genéticos/administración & dosificación , Leucodistrofia de Células Globoides/sangre , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Ratones , Recurrencia
16.
Bone ; 142: 115677, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022452

RESUMEN

Chromatin modifying enzymes play essential roles in skeletal development and bone maintenance, and deregulation of epigenetic mechanisms can lead to skeletal growth and malformation disorders. Here, we report a novel skeletal dysplasia phenotype in mice with conditional loss of Disruptor of telomeric silencing 1-like (Dot1L) histone methyltransferase in limb mesenchymal progenitors and downstream descendants. Phenotypic characterizations of mice with Dot1L inactivation by Prrx1-Cre (Dot1L-cKOPrrx1) revealed limb shortening, abnormal bone morphologies, and forelimb dislocations. Our in vivo and in vitro data support a crucial role for Dot1L in regulating growth plate chondrocyte proliferation and differentiation, extracellular matrix production, and secondary ossification center formation. Micro-computed tomography analysis of femurs revealed that partial loss of Dot1L expression is sufficient to impair trabecular bone formation and microarchitecture in young mice. Moreover, RNAseq analysis of Dot1L deficient chondrocytes implicated Dot1L in the regulation of key genes and pathways necessary to promote cell cycle regulation and skeletal growth. Collectively, our data show that early expression of Dot1L in limb mesenchyme provides essential regulatory control of endochondral bone morphology, growth, and stability.


Asunto(s)
Condrocitos , Mesodermo , Animales , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Fenotipo , Microtomografía por Rayos X
17.
Front Aging Neurosci ; 12: 247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848716

RESUMEN

The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.

18.
Sci Rep ; 10(1): 828, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964978

RESUMEN

The aging brain is associated with significant changes in physiology that alter the tissue microenvironment of the central nervous system (CNS). In the aged CNS, increased demyelination has been associated with astrocyte hypertrophy and aging has been implicated as a basis for these pathological changes. Aging tissues accumulate chronic cellular stress, which can lead to the development of a pro-inflammatory phenotype that can be associated with cellular senescence. Herein, we provide evidence that astrocytes aged in culture develop a spontaneous pro-inflammatory and senescence-like phenotype. We found that extracellular vesicles (EVs) from young astrocyte were sufficient to convey support for oligodendrocyte differentiation while this support was lost by EVs from aged astrocytes. Importantly, the negative influence of culture age on astrocytes, and their cognate EVs, could be countered by treatment with rapamycin. Comparative proteomic analysis of EVs from young and aged astrocytes revealed peptide repertoires unique to each age. Taken together, these findings provide new information on the contribution of EVs as potent mediators by which astrocytes can extert changing influence in either the disease or aged brain.


Asunto(s)
Envejecimiento/patología , Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Encéfalo/patología , Diferenciación Celular , Senescencia Celular , Vesículas Extracelulares/fisiología , Oligodendroglía/fisiología , Animales , Células Cultivadas , Ratones , Proteómica
19.
Neurochem Res ; 45(3): 694-707, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31900795

RESUMEN

The aging brain is associated with significant pathophysiological changes reflected in changes in astrocyte function. In this study, we hypothesized that the response of astrocytes to mechanical and inflammatory stimulation would differ with long-term culture. We report that naïve short-term cultured (young) and long-term cultured astrocytes (aged) exhibit similar recovery to a scratch wound assay. However, in response to IL-1ß young astrocytes have an arrested recovery which is not observed in IL-1ß treated aged astrocytes. We had recently reported that astrocytes release extracellular vesicles (EVs) in response to IL-1ß treatment. Given the disparate phenotypes between young and aged astrocytes, we next examined whether the EVs released from astrocytes reflected the differences in cellular responses to scratch and IL-1B treatment. Young cultures challenged with EVs collected from IL-1ß treated cells exhibited a robust inhibition of wound recovery when compared to astrocytes treated with EVs collected from IL-1ß treated aged astrocyte cultures. Heterochronic experiments also determined that the effect of IL-1ß on astrocyte scratch wound recovery could be recapitulated by EVs alone. Taken together, these findings provide new information on how senescence alters the functional response and how EVs from astrocytes may elicit changes in glial responses which may have relevance to understanding neurological diseases.


Asunto(s)
Astrocitos/efectos de los fármacos , Senescencia Celular , Vesículas Extracelulares/efectos de los fármacos , Interleucina-1beta/farmacología , Animales , Astrocitos/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
20.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31883839

RESUMEN

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Asunto(s)
Complemento C3/inmunología , Encefalomielitis Autoinmune Experimental/patología , Microglía/patología , Esclerosis Múltiple/patología , Sinapsis/patología , Tálamo/patología , Anciano , Anciano de 80 o más Años , Animales , Callithrix , Línea Celular Tumoral , Complemento C3/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores de Complemento 3b/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...