Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1186936, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342248

RESUMEN

Background: Despite the extensive use of silver ions or nanoparticles in research related to preventing implant-associated infections (IAI), their use in clinical practice has been debated. This is because the strong antibacterial properties of silver are counterbalanced by adverse effects on host cells. One of the reasons for this may be the lack of comprehensive in vitro models that are capable of analyzing host-bacteria and host-host interactions. Methods and results: In this study, we tested silver efficacy through multicellular in vitro models involving macrophages (immune system), mesenchymal stem cells (MSCs, bone cells), and S. aureus (pathogen). Our model showed to be capable of identifying each element of culture as well as tracking the intracellular survival of bacteria. Furthermore, the model enabled to find a therapeutic window for silver ions (AgNO3) and silver nanoparticles (AgNPs) where the viability of host cells was not compromised, and the antibacterial properties of silver were maintained. While AgNO3 between 0.00017 and 0.017 µg/mL retained antibacterial properties, host cell viability was not affected. The multicellular model, however, demonstrated that those concentrations had no effect on the survival of S. aureus, inside or outside host cells. Similarly, treatment with 20 nm AgNPs did not influence the phagocytic and killing capacity of macrophages or prevent S. aureus from invading MSCs. Moreover, exposure to 100 nm AgNPs elicited an inflammatory response by host cells as detected by the increased production of TNF-α and IL-6. This was visible only when macrophages and MSCs were cultured together. Conclusions: Multicellular in vitro models such as the one used here that simulate complex in vivo scenarios can be used to screen other therapeutic compounds or antibacterial biomaterials without the need to use animals.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Plata/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
2.
Tissue Eng Part C Methods ; 28(8): 420-430, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770885

RESUMEN

Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 h and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), polyinosinic acid-polycytidylic acid [Poly(I:C)], and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, that target Toll-like receptors (TLRs) 9, 3, and 4, respectively. The conditioned medium (CM) obtained from PBMCs after 24 h was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The CM from CpG ODN C and LPS-stimulated PBMCs increased alkaline phosphatase activity (ALP) of MSCs by approximately threefold as compared with the unstimulated control, whereas Poly(I:C) CM did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased ALP. These results demonstrate that soluble factors present in CM from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Humanos , Leucocitos Mononucleares , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Secretoma
3.
Materials (Basel) ; 14(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673651

RESUMEN

Therapeutic pathogen recognition receptor (PRR) ligands are reaching clinical practice following their ability to skew the immune response in a specific direction. We investigated the effects of various therapeutic PRR ligands on bone cell differentiation and inflammation. Following stimulation, alkaline phosphatase (ALP) activity (Day 10), osteocalcin, osteonectin expression (Day 14), and calcium deposition (Day 21) were quantified in bone marrow-derived human mesenchymal stem cells (hMSCs). The osteoclastogenic response was determined by measuring tartrate-resistant acid phosphate (TRAP) activity in human monocytes. TNF-α, IL-6, IL-8, and IL-10 expressions were measured by enzyme-linked immunosorbent assay as an indicator of the ligands' inflammatory properties. We found that nucleic acid-based ligands Poly(I:C) and CpG ODN C increased early ALP activity in hMSCs by 4-fold without affecting osteoclast formation. These ligands did not enhance expression of the other, late osteogenic markers. MPLA, Curdlan, and Pam3CSK4 did not affect osteogenic differentiation, but inhibited TRAP activity in monocytes, which was associated with increased expression of all measured cytokines. Nucleic acid-based ligands are identified as the most promising osteo-immunomodulators, as they favor early osteogenic differentiation without inducing an exaggerated immune-cell mediated response or interfering in osteoclastogenesis and thus can be potentially harnessed for multifunctional coatings for bone biomaterials.

4.
Adv Mater ; 32(43): e2002962, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32914481

RESUMEN

The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.


Asunto(s)
Bacterias , Materiales Biocompatibles/farmacología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Bacterias/efectos de los fármacos , Materiales Biocompatibles/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunomodulación/efectos de los fármacos , Infecciones Relacionadas con Prótesis/inmunología
5.
Acta Biomater ; 110: 266-279, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32344174

RESUMEN

The rise of additive manufacturing has provided a paradigm shift in the fabrication of precise, patient-specific implants that replicate the physical properties of native bone. However, eliciting an optimal biological response from such materials for rapid bone integration remains a challenge. Here we propose for the first time a one-step ion-assisted plasma polymerization process to create bio-functional 3D printed titanium (Ti) implants that offer rapid bone integration. Using selective laser melting, porous Ti implants with enhanced bone-mimicking mechanical properties were fabricated. The implants were functionalized uniformly with a highly reactive, radical-rich polymeric coating generated using a unique combination of plasma polymerization and plasma immersion ion implantation. We demonstrated the performance of such activated Ti implants with a focus on the coating's homogeneity, stability, and biological functionality. It was shown that the optimized coating was highly robust and possessed superb physico-chemical stability in a corrosive physiological solution. The plasma activated coating was cytocompatible and non-immunogenic; and through its high reactivity, it allowed for easy, one-step covalent immobilization of functional biomolecules in the absence of solvents or chemicals. The activated Ti implants bio-functionalized with bone morphogenetic protein 2 (BMP-2) showed a reduced protein desorption and a more sustained osteoblast response both in vitro and in vivo compared to implants modified through conventional physisorption of BMP-2. The versatile new approach presented here will enable the development of bio-functionalized additively manufactured implants that are patient-specific and offer improved integration with host tissue. STATEMENT OF SIGNIFICANCE: Additive manufacturing has revolutionized the fabrication of patient-specific orthopedic implants. Although such 3D printed implants can show desirable mechanical and mass transport properties, they often require surface bio-functionalities to enable control over the biological response. Surface covalent immobilization of bioactive molecules is a viable approach to achieve this. Here we report the development of additively manufactured titanium implants that precisely replicate the physical properties of native bone and are bio-functionalized in a simple, reagent-free step. Our results show that covalent attachment of bone-related growth factors through ion-assisted plasma polymerized interlayers circumvents their desorption in physiological solution and significantly improves the bone induction by the implants both in vitro and in vivo.


Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Osteoblastos , Porosidad , Titanio/farmacología
6.
Mater Sci Eng C Mater Biol Appl ; 106: 110163, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753334

RESUMEN

Nanotopography and stiffness are major physical cues affecting cell fate. However, the current nanofiber modifications techniques are limited by their ability to control these two physical cues irrespective of each other without changing the materials' surface chemistry. For this reason, the isolated effects of topography and stiffness on osteogenic regulation in electrospun nanofibers have been studied incompletely. Here, we investigated 1. how functionalized multiwall carbon nanotubes (F-MWCNTs) loaded in Polycaprolactone (PCL) nanofibers control their physical properties and 2. whether the resulting unique structures lead to distinctive phenotypes in bone progenitor cells. Changes in material properties were measured by high-resolution electron microscopes, protein adsorption and tensile tests. The effect of the developed structures on human mesenchymal stem cell (MSC) osteogenic differentiation was determined by extensive quantification of early and late osteogenic marker genes. It was found that F-MWCNT loading was an effective method to independently control the PCL nanofiber surface nanoroughness or stiffness, depending on the applied F-MWCNT concentration. Collectively, this suggests that stiffness and topography activate distinct osteogenic signaling pathway. The current strategy can help our further understanding of the mechano-biological responses in osteoprogenitor cells, which could ultimately lead to improved design of bone substitute biomaterials.


Asunto(s)
Nanofibras/química , Nanotecnología/métodos , Osteogénesis/fisiología , Poliésteres/química , Ingeniería de Tejidos/métodos , Animales , Humanos
7.
PLoS One ; 14(7): e0220028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31365542

RESUMEN

To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Regeneración Ósea , Alginatos/química , Animales , Diferenciación Celular , Cerámica/química , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Plásmidos/genética , Plásmidos/metabolismo , Ratas , Ratas Endogámicas F344 , Transfección/métodos
8.
J Orthop Res ; 37(10): 2067-2076, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31329305

RESUMEN

The clinical impact of bacterial infections on bone regeneration has been incompletely quantified and documented. As a result, controversy exists about the optimal treatment strategy to maximize healing of a contaminated defect. Animal models are extremely useful in this respect, as they can elucidate how a bacterial burden influences quantitative healing of various types of defects relative to non-infected controls. Moreover, they may demonstrate how antibacterial treatment and/or bone grafting techniques facilitate the osteogenic response in the harsh environment of a bacterial infection. Finally, it a well-known contradiction that osteomyelitis is characterized by uncontrolled bone remodeling and bone loss, but at the same time, it can be associated with excessive new bone apposition. Animal studies can provide a better understanding of how osteolytic and osteogenic responses are related to each other during infection. This review discusses the in vivo impact of bacterial infection on osteogenesis by addressing the following questions (i) How does osteomyelitis affect the radiographic bone appearance? (ii) What is the influence of bacterial infection on histological bone healing? (iii) How do bacterial infections affect quantitative bone healing? (iv) What is the effect of antibacterial treatment on the healing outcome during infection? (v) What is the efficacy of osteoinductive proteins in infected bones? (vi) What is the balance between the osteoclastic and osteoblastic response during bacterial infections? (vii) What is the mechanism of the observed pro-osteogenic response as observed in osteomyelitis? © 2019 The Authors. Journal of Orthopaedic Research© published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2067-2076, 2019.


Asunto(s)
Infecciones Bacterianas/fisiopatología , Regeneración Ósea , Osteomielitis/fisiopatología , Animales , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Morfogenéticas Óseas/uso terapéutico , Humanos , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteogénesis , Osteomielitis/diagnóstico por imagen , Osteomielitis/tratamiento farmacológico
9.
Front Immunol ; 9: 945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765377

RESUMEN

Although controlled local inflammation is essential for adequate bone regeneration, several studies have shown that hyper-inflammatory conditions after major trauma are associated with impaired fracture healing. These hyper-inflammatory conditions include the trauma-induced systemic inflammatory response to major injury, open fractures, and significant injury to the surrounding soft tissues. The current literature suggests that increased or prolonged influx of neutrophils into the fracture hematoma may mediate impairment of bone regeneration after hyper-inflammatory conditions. The underlying mechanism remains unclear. We hypothesize that high neutrophil numbers inhibit synthesis of mineralized extracellular matrix (ECM) by bone marrow stromal cells (BMSCs). We therefore studied the effect of increasing concentrations of neutrophils on ECM synthesis by human BMSCs in vitro. Moreover, we determined how high neutrophil concentrations affect BMSC cell counts, as well as BMSC osteogenic activity determined by alkaline phosphatase (ALP) expression and ALP activity. Co-culture of BMSCs with neutrophils induced a 52% decrease in BMSC cell count (p < 0.01), a 64% decrease in the percentage of ALP+ cells (p < 0.001), a 28% decrease in total ALP activity (p < 0.01), and a significant decrease in the amount of mineralized ECM [38% decrease after 4 weeks (p < 0.05)]. Co-cultures with peripheral blood mononuclear cells and neutrophils within transwells did not induce a significant decrease in ALP activity. In conclusion, our data shows that a decreased amount of mineralized ECM became synthesized by BMSCs, when they were co-cultured with high neutrophil concentrations. Moreover, high neutrophil concentrations induced a decrease in BMSC cell counts and decreased ALP activity. Clarifying the underlying mechanism may contribute to development of therapies that augment bone regeneration or prevent impaired fracture healing after hyper-inflammatory conditions.


Asunto(s)
Biomineralización , Comunicación Celular , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/metabolismo , Antígenos de Superficie/metabolismo , Biomarcadores , Recuento de Células , Diferenciación Celular , Supervivencia Celular , Técnicas de Cocultivo , Matriz Extracelular/patología , Expresión Génica , Humanos , Inmunohistoquímica , Recién Nacido , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Células Madre Mesenquimatosas/citología , Neutrófilos/inmunología , Neutrófilos/patología , Osteogénesis
10.
Tissue Eng Part A ; 24(19-20): 1423-1431, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29766760

RESUMEN

Ex vivo nonviral gene delivery of bone inductive factors has the potential to heal bone defects. Due to their inherent role in new bone formation, multipotent stromal cells (MSCs) have been studied as the primary target cell for gene delivery in a preclinical setting. The relative contribution of autocrine and paracrine mechanisms, and the need of osteogenic cells, remains unclear. This study investigates the contribution of MSCs as producer of transgenic bone morphogenetic proteins (BMPs) and to what extent the seeded MSCs participate in actual osteogenesis. Rat-derived MSCs or fibroblasts (FBs) were cotransfected with pBMP-2 and pBMP-6 or pBMP-7 via nucleofection. The bioactivity of BMP products was shown through in vitro osteogenic differentiation assays. To investigate their role in new bone formation, transfected cells were seeded on ceramic scaffolds and implanted subcutaneously in rats. Bone formation was assessed by histomorphometry after 8 weeks. As a proof of principle, we also investigated the suitability of bone marrow-derived mononuclear cells and the stromal vascular fraction isolated from adipose tissue for a one-stage gene delivery strategy. Bone formation was induced in all conditions containing cells overexpressing BMP heterodimers. Constructs seeded with FBs transfected with BMP-2/6 and MSCs transfected with BMP-2/6 showed comparable bone volumes, both significantly higher than controls. Single-stage gene delivery proved possible and resulted in some bone formation. We conclude that bone formation as a result of ex vivo BMP gene delivery can be achieved even without direct osteogenic potential of the transfected cell type, suggesting that transfected cells mainly function as a production facility for osteoinductive proteins. In addition, single-stage transfection and reimplantation of cells appeared feasible, thus facilitating future clinical translation of the method.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Técnicas de Transferencia de Gen , Oseointegración , Animales , Diferenciación Celular , Fibroblastos/metabolismo , Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Comunicación Paracrina , Plásmidos/metabolismo , Ratas Endogámicas F344 , Células del Estroma/citología , Células del Estroma/metabolismo , Transgenes , Virus/metabolismo
11.
Tissue Eng Part C Methods ; 23(11): 673-685, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28637383

RESUMEN

Pathologic conditions associated with bone formation can serve as models to identify bone-promoting mediators. The inflammatory response to bacterial infections generally leads to osteolysis and impaired bone healing, but paradoxically, it can also have pro-osteogenic effects. As a potential model to investigate pro-osteogenic stimuli, this study characterizes the bone formation in an established rabbit tibia model of periprosthetic infection. Our hypothesis was that the infection with Staphylococcus aureus (S. aureus) correlates with bone formation as a response to local inflammation. Fluorochromes showed excessive subperiosteal bone formation in infected tibiae, starting the first week and continuing throughout the study period. Despite the observed cortical lysis on micro-CT after 28 days, infection resulted in a twofold higher bone volume in the proximal tibiae compared to uninfected controls. The ipsilateral fibulae, nor the contralateral fibulae or tibiae were affected by infection. Next, we sought to confine the cause of stimulated bone formation to the isolated S. aureus cell wall. In absence of virulent bacterial infection, the S. aureus cell wall extract induced bone in a more favorable way without cortical lysis. This suggests that the sterile inflammatory reaction to bacterial antigens may be harnessed for bone regenerative purposes. Future investigations in this rabbit tibia model can lead to further identification of effective stimuli for clinical application.


Asunto(s)
Inflamación/patología , Osteogénesis , Tibia/patología , Animales , Peso Corporal , Pared Celular/metabolismo , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Conejos , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Tibia/diagnóstico por imagen , Tibia/microbiología , Microtomografía por Rayos X
12.
Bone ; 84: 262-270, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780388

RESUMEN

The local immune response is important to consider when the aim is to improve bone regeneration. Recently T lymphocytes and their associated cytokines have been identified as regulators in fracture callus formation, but it is not known whether T cells affect bone progenitor cells directly. The goal of this in vitro study was to investigate the role of different T cell subsets and their secreted factors on the osteogenic differentiation of human mesenchymal stem cells (MSCs). Significant increases in the alkaline phosphatase activity and the subsequent matrix mineralization by MSCs were found after their exposure to activated T cells or activated T cell-derived conditioned medium. Blocking IFN-γ in the conditioned medium abolished its pro-osteogenic effect, while blocking TGF-ß further enhanced osteogenesis. The relative contribution of an anti- or proinflammatory T cell phenotype in MSC osteogenic differentiation was studied next. Enrichment of the fraction of anti-inflammatory regulatory T cells had no beneficial osteogenic effect. In contrast, soluble factors derived from enriched T helper 17 cells upregulated the expression of osteogenic markers by MSCs. IL-17A, and IL-17F, their main proinflammatory cytokines, similarly exhibited strong osteogenic effects when exposed directly to MSCs. IL-17A in particular showed a synergistic action together with bone morphogenetic protein 2. These results indicate that individual T cell subsets, following their activation, affect osteoblast maturation in a different manner through the production of soluble factors. From all T cells, the proinflammatory T cells, including the T helper 17 cells, are most stimulatory for osteogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Diferenciación Celular/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-17/farmacología , Osteoblastos/citología , Anciano , Linfocitos T CD4-Positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos
13.
PLoS One ; 10(7): e0132781, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176237

RESUMEN

Several inflammatory processes underlie excessive bone formation, including chronic inflammation of the spine, acute infections, or periarticular ossifications after trauma. This suggests that local factors in these conditions have osteogenic properties. Mesenchymal stem cells (MSCs) and their differentiated progeny contribute to bone healing by synthesizing extracellular matrix and inducing mineralization. Due to the variation in experimental designs used in vitro, there is controversy about the osteogenic potential of proinflammatory factors on MSCs. Our goal was to determine the specific conditions allowing the pro-osteogenic effects of distinct inflammatory stimuli. Human bone marrow MSCs were exposed to tumor necrosis factor alpha (TNF-α) and lipopolysaccharide (LPS). Cells were cultured in growth medium or osteogenic differentiation medium. Alternatively, bone morphogenetic protein 2 (BMP-2) was used as osteogenic supplement to simulate the conditions in vivo. Alkaline phosphatase activity and calcium deposition were indicators of osteogenicity. To elucidate lineage commitment-dependent effects, MSCs were pre-differentiated prior treatment. Our results show that TNF-α and LPS do not affect the expression of osteogenic markers by MSCs in the absence of an osteogenic supplement. In osteogenic differentiation medium or together with BMP-2 however, these mediators highly stimulated their alkaline phosphatase activity and subsequent matrix mineralization. In pre-osteoblasts, matrix mineralization was significantly increased by these mediators, but irrespective of the culture conditions. Our study shows that inflammatory factors potently enhance the osteogenic capacity of MSCs. These properties may be harnessed in bone regenerative strategies. Importantly, the commitment of MSCs to the osteogenic lineage greatly enhances their responsiveness to inflammatory signals.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Mediadores de Inflamación/farmacología , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...