Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 820134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320930

RESUMEN

The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Granuloma , Humanos
2.
Elife ; 112022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35200139

RESUMEN

The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα- macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Macrófagos/metabolismo , NADP/metabolismo , Heridas y Lesiones/metabolismo , Pez Cebra/metabolismo , Animales , Femenino , Fluorescencia , Glucólisis , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Oxidación-Reducción , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34347010

RESUMEN

Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.


Asunto(s)
Eosinófilos/fisiología , Granulocitos/fisiología , Pulmón/microbiología , Tuberculosis/microbiología , Tuberculosis/patología , Adulto , Animales , Femenino , Granulocitos/microbiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Tuberculosis Latente/microbiología , Pulmón/patología , Macaca mulatta , Masculino , Ratones Mutantes , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/tratamiento farmacológico , Pez Cebra/microbiología
4.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33761328

RESUMEN

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Asunto(s)
Granuloma/patología , Inmunidad/fisiología , Infecciones por Mycobacterium no Tuberculosas/patología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Células Epitelioides/citología , Células Epitelioides/inmunología , Células Epitelioides/metabolismo , Granuloma/inmunología , Granuloma/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/aislamiento & purificación , Mycobacterium marinum/fisiología , Necrosis , ARN Guía de Kinetoplastida/metabolismo , Receptores de Interleucina-4/antagonistas & inhibidores , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Factor de Transcripción STAT6/antagonistas & inhibidores , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(34): 16961-16970, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31391308

RESUMEN

Intestinal epithelial cell (IEC) shedding is a fundamental response to intestinal damage, yet underlying mechanisms and functions have been difficult to define. Here we model chronic intestinal damage in zebrafish larvae using the nonsteroidal antiinflammatory drug (NSAID) Glafenine. Glafenine induced the unfolded protein response (UPR) and inflammatory pathways in IECs, leading to delamination. Glafenine-induced inflammation was augmented by microbial colonization and associated with changes in intestinal and environmental microbiotas. IEC shedding was a UPR-dependent protective response to Glafenine that restricts inflammation and promotes animal survival. Other NSAIDs did not induce IEC delamination; however, Glafenine also displays off-target inhibition of multidrug resistance (MDR) efflux pumps. We found a subset of MDR inhibitors also induced IEC delamination, implicating MDR efflux pumps as cellular targets underlying Glafenine-induced enteropathy. These results implicate IEC delamination as a protective UPR-mediated response to chemical injury, and uncover an essential role for MDR efflux pumps in intestinal homeostasis.


Asunto(s)
Antiinflamatorios no Esteroideos , Enterocitos/metabolismo , Microbioma Gastrointestinal , Glafenina/efectos adversos , Enfermedades Intestinales , Pez Cebra , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/farmacología , Enterocitos/microbiología , Enterocitos/patología , Glafenina/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/microbiología , Enfermedades Intestinales/patología , Pez Cebra/metabolismo , Pez Cebra/microbiología
7.
Elife ; 82019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855229

RESUMEN

Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons.


Asunto(s)
Epidermis/anatomía & histología , Epidermis/crecimiento & desarrollo , Morfogénesis , Nociceptores/citología , Nociceptores/fisiología , Animales , Drosophila , Células Epidérmicas/citología , Células Epidérmicas/fisiología , Pez Cebra
8.
Elife ; 82019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30693866

RESUMEN

Mycobacterium tuberculosis is the leading worldwide cause of death due to a single infectious agent. Existing anti-tuberculous therapies require long treatments and are complicated by multi-drug-resistant strains. Host-directed therapies have been proposed as an orthogonal approach, but few have moved into clinical trials. Here, we use the zebrafish-Mycobacterium marinum infection model as a whole-animal screening platform to identify FDA-approved, host-directed compounds. We identify multiple compounds that modulate host immunity to limit mycobacterial disease, including the inexpensive, safe, and widely used drug clemastine. We find that clemastine alters macrophage calcium transients through potentiation of the purinergic receptor P2RX7. Host-directed drug activity in zebrafish larvae depends on both P2RX7 and inflammasome signaling. Thus, targeted activation of a P2RX7 axis provides a novel strategy for enhanced control of mycobacterial infections. Using a novel explant model, we find that clemastine is also effective within the complex granulomas that are the hallmark of mycobacterial infection.


Asunto(s)
Antituberculosos/farmacología , Clemastina/farmacología , Granuloma/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Receptores Purinérgicos P2X7/genética , Proteínas de Pez Cebra/genética , Animales , Antialérgicos/farmacología , Calcio/inmunología , Calcio/metabolismo , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica , Granuloma/genética , Granuloma/inmunología , Granuloma/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamasomas , Larva/efectos de los fármacos , Larva/genética , Larva/inmunología , Larva/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/crecimiento & desarrollo , Mycobacterium marinum/inmunología , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Receptores Purinérgicos P2X7/inmunología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Pez Cebra/genética , Pez Cebra/inmunología , Pez Cebra/microbiología , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/inmunología
9.
Nat Methods ; 15(12): 1098-1107, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30504889

RESUMEN

A central and critical structure in tuberculosis, the mycobacterial granuloma consists of highly organized immune cells, including macrophages that drive granuloma formation through a characteristic epithelioid transformation. Difficulties in imaging within intact animals and caveats associated with in vitro assembly models have severely limited the study and experimental manipulation of mature granulomas. Here we describe a new ex vivo culture technique, wherein mature, fully organized zebrafish granulomas are microdissected and maintained in three-dimensional (3D) culture. This approach enables high-resolution microscopy of granuloma macrophage dynamics, including epithelioid macrophage motility and granuloma consolidation, while retaining key bacterial and host characteristics. Using mass spectrometry, we find active production of key phosphotidylinositol species identified previously in human granulomas. We also describe a method to transfect isolated granulomas, enabling genetic manipulation, and provide proof-of-concept for host-directed small-molecule screens, identifying protein kinase C (PKC) signaling as an important regulator of granuloma macrophage organization.


Asunto(s)
Granuloma/patología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Macrófagos/patología , Tuberculosis/patología , Animales , Animales Modificados Genéticamente , Granuloma/tratamiento farmacológico , Granuloma/microbiología , Indoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Maleimidas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pez Cebra
10.
Cell Host Microbe ; 24(4): 514-525.e6, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308157

RESUMEN

Mycobacterial infection leads to the formation of characteristic immune aggregates called granulomas, a process accompanied by dramatic remodeling of the host vasculature. As granuloma angiogenesis favors the infecting mycobacteria, it may be actively promoted by bacterial determinants during infection. Using Mycobacterium marinum-infected zebrafish as a model, we identify the enzyme proximal cyclopropane synthase of alpha-mycolates (PcaA) as an important bacterial determinant of granuloma-associated angiogenesis. cis-Cyclopropanation of mycobacterial mycolic acids by pcaA drives the activation of host Vegf signaling within granuloma macrophages. Cyclopropanation of the mycobacterial cell wall glycolipid trehalose dimycolate is both required and sufficient to induce robust host angiogenesis. Inducible genetic inhibition of angiogenesis and Vegf signaling during granuloma formation results in bacterial growth deficits. Together, these data reveal a mechanism by which PcaA-mediated cis-cyclopropanation of mycolic acids promotes bacterial growth and dissemination in vivo by eliciting granuloma vascularization and suggest potential approaches for host-directed therapies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metiltransferasas/metabolismo , Mycobacterium marinum/enzimología , Neovascularización Patológica/microbiología , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Tuberculoma/microbiología , Inhibidores de la Angiogénesis/farmacología , Animales , Proteínas Bacterianas/genética , Factores Cordón/metabolismo , Modelos Animales de Enfermedad , Humanos , Indazoles , Macrófagos/inmunología , Macrófagos/microbiología , Metiltransferasas/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidad , Ácidos Micólicos/metabolismo , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Pirimidinas/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/efectos de los fármacos , Transducción de Señal , Sulfonamidas/farmacología , Tuberculoma/inmunología , Tuberculoma/patología , Pez Cebra
11.
J Infect Dis ; 215(5): 813-817, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27496976

RESUMEN

Pathogenic mycobacteria trigger formation of organized granulomas. As granulomas mature, they induce angiogenesis and vascular permeability. Here, in a striking parallel to tumor pro-angiogenic signaling, we identify angiopoietin-2 (ANG-2) induction as an important component of vascular dysfunction during mycobacterial infection. Mycobacterial infection in humans and zebrafish results in robust induction of ANG-2 expression from macrophages and stromal cells. Using a small-molecule inhibitor closely related to one currently in clinical trials, we link ANG-2/TIE2 signaling to vascular permeability during mycobacterial infection. Targeting granuloma-induced vascular permeability via vascular endothelial-protein tyrosine phosphatase inhibition limits mycobacterial growth, suggesting a new strategy for host-directed therapies against tuberculosis.


Asunto(s)
Angiopoyetina 2/metabolismo , Permeabilidad Capilar , Infecciones por Mycobacterium/patología , Mycobacterium/crecimiento & desarrollo , Angiopoyetina 2/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Granuloma/microbiología , Interacciones Huésped-Patógeno , Humanos , Larva , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium/efectos de los fármacos , Receptor TIE-2/metabolismo , Transducción de Señal , Tuberculosis/microbiología , Pez Cebra
12.
Immunity ; 45(4): 861-876, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760340

RESUMEN

Mycobacterium tuberculosis infection in humans triggers formation of granulomas, which are tightly organized immune cell aggregates that are the central structure of tuberculosis. Infected and uninfected macrophages interdigitate, assuming an altered, flattened appearance. Although pathologists have described these changes for over a century, the molecular and cellular programs underlying this transition are unclear. Here, using the zebrafish-Mycobacterium marinum model, we found that mycobacterial granuloma formation is accompanied by macrophage induction of canonical epithelial molecules and structures. We identified fundamental macrophage reprogramming events that parallel E-cadherin-dependent mesenchymal-epithelial transitions. Macrophage-specific disruption of E-cadherin function resulted in disordered granuloma formation, enhanced immune cell access, decreased bacterial burden, and increased host survival, suggesting that the granuloma can also serve a bacteria-protective role. Granuloma macrophages in humans with tuberculosis were similarly transformed. Thus, during mycobacterial infection, granuloma macrophages are broadly reprogrammed by epithelial modules, and this reprogramming alters the trajectory of infection and the associated immune response.


Asunto(s)
Epitelio/inmunología , Macrófagos/inmunología , Mycobacterium marinum/inmunología , Animales , Cadherinas/inmunología , Epitelio/microbiología , Granuloma/inmunología , Granuloma/microbiología , Macrófagos/microbiología , Mycobacterium tuberculosis/inmunología , Pez Cebra
13.
Dis Model Mech ; 8(12): 1643-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26449262

RESUMEN

Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ.


Asunto(s)
Envejecimiento/patología , Imagenología Tridimensional/métodos , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Pez Cebra/microbiología , Animales , Vasos Sanguíneos/patología , Modelos Animales de Enfermedad , Femenino , Fluorescencia , Granuloma/microbiología , Granuloma/patología , Pulmón/microbiología , Pulmón/patología , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/fisiología , Neovascularización Fisiológica , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/metabolismo
14.
PLoS One ; 10(10): e0138949, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26445458

RESUMEN

Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Macrófagos/microbiología , Infecciones por Mycobacterium/genética , Regiones Promotoras Genéticas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Pez Cebra/microbiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/microbiología , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Inmunidad Innata/genética , Larva/genética , Larva/microbiología , Infecciones por Mycobacterium/microbiología , Mycobacterium marinum/patogenicidad , Salmonella typhimurium/patogenicidad , Transgenes/genética
15.
Immunol Rev ; 264(1): 276-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25703566

RESUMEN

Recent work in a variety of animal models, including mice, zebrafish, and macaques, as well as in humans, has led to a reassessment of several tenets of mycobacterial infection. In this review, we describe new findings about the composition and dynamics of the tuberculous granuloma, the central host structure in mycobacterial infection, as well as inflammatory mediators that drive a successful anti-microbial response on one hand and pathological inflammation on the other. We highlight granuloma heterogeneity that emerges in the context of infection, the functional consequences of angiogenesis in tuberculous granulomas, and data that balanced inflammation in humans, with a central role for tumor necrosis factor, appears to play a key role in optimal defense against mycobacterial infection. These findings have suggested new and specific host-directed therapies that await further clinical exploration.


Asunto(s)
Granuloma/inmunología , Granuloma/patología , Mycobacterium tuberculosis/inmunología , Neovascularización Patológica , Tuberculosis/inmunología , Tuberculosis/patología , Animales , Antituberculosos/uso terapéutico , Citocinas/metabolismo , Eicosanoides/metabolismo , Granuloma/metabolismo , Humanos , Hipoxia/metabolismo , Mediadores de Inflamación/metabolismo , Neovascularización Patológica/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/genética , Tuberculosis/metabolismo
16.
Nature ; 517(7536): 612-5, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25470057

RESUMEN

Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/crecimiento & desarrollo , Neovascularización Patológica/microbiología , Transducción de Señal/efectos de los fármacos , Pez Cebra/microbiología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antibióticos Antituberculosos/farmacología , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Granuloma/tratamiento farmacológico , Granuloma/metabolismo , Granuloma/microbiología , Granuloma/patología , Hipoxia/metabolismo , Hipoxia/microbiología , Hipoxia/patología , Larva/efectos de los fármacos , Larva/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/patogenicidad , Neovascularización Patológica/tratamiento farmacológico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
17.
Dis Model Mech ; 7(7): 777-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24973748

RESUMEN

Despite efforts to generate new vaccines and antibiotics for tuberculosis, the disease remains a public health problem worldwide. The zebrafish Danio rerio has emerged as a useful model to investigate mycobacterial pathogenesis and treatment. Infection of zebrafish with Mycobacterium marinum, the closest relative of the Mycobacterium tuberculosis complex, recapitulates many aspects of human tuberculosis. The zebrafish model affords optical transparency, abundant genetic tools and in vivo imaging of the progression of infection. Here, we review how the zebrafish-M. marinum system has been deployed to make novel observations about the role of innate immunity, the tuberculous granuloma, and crucial host and bacterial genes. Finally, we assess how these findings relate to human disease and provide a framework for novel strategies to treat tuberculosis.


Asunto(s)
Modelos Animales de Enfermedad , Tuberculosis/patología , Pez Cebra/microbiología , Animales , Humanos , Inmunidad Innata , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Tuberculosis/microbiología , Pez Cebra/genética
18.
Mol Pharmacol ; 77(3): 327-38, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19933401

RESUMEN

The concept of functional selectivity has now thoroughly supplanted the previously entrenched notion of intrinsic efficacy by explaining how agonists and antagonists exhibit a range of efficacies for distinct receptor-mediated responses. It is noteworthy that functional selectivity accommodates significant changes in efficacy resulting from differential expression of G protein-coupled receptor modifying proteins (i.e., "conditional efficacy")-a phenomenon with profound implications for drug discovery. We have uncovered a novel regulatory mechanism whereby p90 ribosomal S6 kinase 2 (RSK2) interacts with 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and attenuates receptor signaling via direct receptor phosphorylation (Proc Natl Acad Sci U S A 103:4717-4722, 2006; J Biol Chem 284:5557-5573, 2009). This discovery, together with the mounting evidence for conditional efficacy, suggested to us that 5-HT(2A) agonist signaling might be disproportionately affected by alterations in RSK2 expression. To test this hypothesis, we evaluated a chemically diverse set of 5-HT(2A) agonists at three readouts of 5-HT(2A) receptor activation in both wild-type (WT) and RSK2 knock-out (KO) mouse embryonic fibroblasts (MEFs). Here we report that 5-HT(2A) receptor agonist efficacies were significantly and variably augmented in RSK2 KO MEFs compared with WT MEFs. As a result, relative agonist efficacies were significantly altered, and even reversed, between WT and RSK2 KO MEFs for a single effector readout. This study provides the first evidence that deletion of a single kinase can elicit profound changes in patterns of agonist functional selectivity.


Asunto(s)
Eliminación de Gen , Sistema de Señalización de MAP Quinasas/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Agonistas del Receptor de Serotonina 5-HT2 , Agonistas de Receptores de Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...