Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746566

RESUMEN

In this study, we invented and construct novel candidate HIV-1 vaccines. Through genetic and protein engineering, we unknowingly constructed an HIV-1-derived transgene with a homopolymeric run of 11 cytidines, which was inserted into an adenovirus vaccine vector. Here, we describe the virus rescue, three rounds of clonal purification and preparation of good manufacturing practise (GMP) starting material assessed for genetic stability in five additional virus passages. Throughout these steps, quality control assays indicated the presence of the transgene in the virus genome, expression of the correct transgene product and immunogenicity in mice. However, DNA sequencing of the transgene revealed additional cytidines inserted into the original 11-cytidine region, and the GMP manufacture had to be aborted. Subsequent analyses indicated that as little as 1/25th of the virus dose used for confirmation of protein expression (106 cells at a multiplicity of infection of 10) and murine immunogenicity (108 infectious units per animal) met the quality acceptance criteria. Similar frameshifts in the expressed proteins were reproduced in a one-reaction in vitro transcription/translation employing phage T7 polymerase and E. coli ribosomes. Thus, the most likely mechanism for addition of extra cytidines into the ChAdOx1.tHIVconsv6 genome is that the adenovirus DNA polymerase lost its fidelity on a stretch of 11 cytidines, which informs future adenovirus vaccine designs.

2.
Vaccines (Basel) ; 8(2)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485938

RESUMEN

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.

3.
Front Immunol ; 11: 823, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435247

RESUMEN

Kick&kill strategies combining drugs aiming to reactivate the viral reservoir with therapeutic vaccines to induce effective cytotoxic immune responses hold potential to achieve a functional cure for HIV-1 infection. Here, we report on an open-label, single-arm, phase I clinical trial, enrolling 15 early-treated HIV-1-infected individuals, testing the combination of the histone deacetylase inhibitor romidepsin as a latency-reversing agent and the MVA.HIVconsv vaccine. Romidepsin treatment resulted in increased histone acetylation, cell-associated HIV-1 RNA, and T-cell activation, which were associated with a marginally significant reduction of the viral reservoir. Vaccinations boosted robust and broad HIVconsv-specific T cells, which were strongly refocused toward conserved regions of the HIV-1 proteome. During a monitored ART interruption phase using plasma viral load over 2,000 copies/ml as a criterium for ART resumption, 23% of individuals showed sustained suppression of viremia up to 32 weeks without evidence for reseeding the viral reservoir. Results from this pilot study show that the combined kick&kill intervention was safe and suggest a role for this strategy in achieving an immune-driven durable viremic control.


Asunto(s)
Vacunas contra el SIDA/inmunología , Antivirales/uso terapéutico , Depsipéptidos/uso terapéutico , Infecciones por VIH/inmunología , VIH-1/fisiología , Inhibidores de Histona Desacetilasas/uso terapéutico , Adulto , Reservorios de Enfermedades , Quimioterapia Combinada , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Carga Viral , Viremia , Latencia del Virus
5.
EClinicalMedicine ; 11: 65-80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312806

RESUMEN

BACKGROUND: Strong and broad antiviral T-cell responses targeting vulnerable sites of HIV-1 will likely be a critical component for any effective cure strategy. METHODS: BCN01 trial was a phase I, open-label, non-randomized, multicenter study in HIV-1-positive individuals diagnosed and treated during early HIV-1 infection to evaluate two vaccination regimen arms, which differed in the time (8 versus 24 week) between the ChAdV63.HIVconsv prime and MVA.HIVconsv boost vaccinations. The primary outcome was safety. Secondary endpoints included frequencies of vaccine-induced IFN-γ+ CD8+ T cells, in vitro virus-inhibitory capacity, plasma HIV-1 RNA and total CD4+ T-cells associated HIV-1 DNA. (NCT01712425). FINDINGS: No differences in safety, peak magnitude or durability of vaccine-induced responses were observed between long and short interval vaccination arms. Grade 1/2 local and systemic post-vaccination events occurred in 22/24 individuals and resolved within 3 days. Weak responses to conserved HIV-1 regions were detected in 50% of the individuals before cART initiation, representing median of less than 10% of their total HIV-1-specific T cells. All participants significantly elevated these subdominant T-cell responses, which after MVA.HIVconsv peaked at median (range) of 938 (73-6,805) IFN-γ SFU/106 PBMC, representing on average 58% of their total anti-HIV-1 T cells. The decay in the size of the HIV-1 reservoir was consistent with the first year of early cART initiation in both arms. INTERPRETATION: Heterologous prime-boost vaccination with ChAdV63-MVA/HIVconsv was well-tolerated and refocused pre-cART T-cell responses towards more protective epitopes, in which immune escape is frequently associated with reduced HIV-1 replicative fitness and which are common to most global HIV-1 variants. FUNDING: HIVACAT Catalan research program for an HIV vaccine and Fundació Gloria Soler. Vaccine manufacture was jointly funded by the Medical Research Council (MRC) UK and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements (G0701669. RESEARCH IN CONTEXT: Evidence Before this Study: T cells play an important role in the control of HIV infection and may be particularly useful for HIV-1 cure by killing cells with reactivated HIV-1. Evidence is emerging that not all T-cell responses are protective and mainly only those targeting conserved regions of HIV-1 proteins are effective, but typically immunologically subdominant, while those recognizing hypervariable, easy-to-escape immunodominant 'decoys' do not control viremia and do not protect from a loss of CD4 T cells. We pioneered a vaccine strategy focusing T-cell responses on the most conserved regions of the HIV-1 proteome using an immunogen designated HIVconsv. T cells elicited by the HIVconsv vaccines in HIV-uninfected UK and Kenyan adults inhibited in vitro replication of HIV-1 isolates from 4 major global clades A, B, C and D.Added Value of this Study: The present study demonstrated the concept that epitopes subdominant in natural infection, when taken out of the context of the whole HIV-1 proteome and presented to the immune system by a potent simian adenovirus prime-poxvirus MVA boost regimen, can induce strong responses in patients on antiretroviral treatment and efficiently refocus HIV-1-specific T-cells to the protective epitopes delivered by the vaccine.Implications of all the Available Evidence: Nearly all HIV-1 vaccine strategies currently emphasize induction of broadly neutralizing Abs. The HIVconsv vaccine is one of a very few approaches focussing exclusively on elicitation of T cells and, therefore, can complement antibody induction for better prevention and cure. Given the cross-clade reach on the HIVconsv immunogen design, if efficient, the HIVconsv vaccines could be deployed globally. Effective vaccines will likely be a necessary component in combination with other available preventive measures for halting the HIV-1/AIDS epidemic.

6.
PLoS Pathog ; 15(2): e1007564, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817809

RESUMEN

There are a number of vaccine candidates under development against a small number of the most common outbreak filoviruses all employing the virus glycoprotein (GP) as the vaccine immunogen. However, antibodies induced by such GP vaccines are typically autologous and limited to the other members of the same species. In contrast, T-cell vaccines offer a possibility to design a single pan-filovirus vaccine protecting against all known and even likely existing, but as yet unencountered members of the family. Here, we used a cross-filovirus immunogen based on conserved regions of the filovirus nucleoprotein, matrix and polymerase to construct simian adenovirus- and poxvirus MVA-vectored vaccines, and in a proof-of-concept study demonstrated a protection of the BALB/c and C57BL/6J mice against high, lethal challenges with Ebola and Marburg viruses, two distant members of the family, by vaccine-elicited T cells in the absence of GP antibodies.


Asunto(s)
Filoviridae/inmunología , Linfocitos T/inmunología , Vacunas Virales/farmacología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra el Virus del Ébola , Ebolavirus/patogenicidad , Femenino , Filoviridae/metabolismo , Filoviridae/patogenicidad , Fiebre Hemorrágica Ebola , Inmunidad Celular/inmunología , Masculino , Marburgvirus/patogenicidad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Prueba de Estudio Conceptual , Linfocitos T/metabolismo
7.
PLoS One ; 13(5): e0197299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29772028

RESUMEN

BACKGROUND: The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. METHODS: Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. RESULTS: No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. CONCLUSIONS: The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. TRIAL REGISTRATION: Clinicaltrials.gov NCT02425241.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Componente Amiloide P Sérico/análisis , Linfocitos T/inmunología , Vacunas de ADN/inmunología , Vacunas contra el SIDA/efectos adversos , Adulto , Infecciones por VIH/inmunología , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Masculino , Prueba de Estudio Conceptual , Vacunación , Vacunas de ADN/efectos adversos , Adulto Joven
8.
PLoS One ; 12(7): e0181382, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719652

RESUMEN

BACKGROUND: Durability of vaccine-elicited immune responses is one of the key determinants for vaccine success. Our aim is to develop a vaccination strategy against the human immunodeficiency virus type 1 (HIV-1), which induces protective and durable CD8+ T-cell responses. The central theorem of our approach is to focus T cells on highly conserved regions of the HIV-1 proteome and this is achieved through the use of the first-generation conserved vaccine immunogen HIVconsv. This immunogen vectored by plasmid DNA, simian adenovirus and poxvirus MVA was tested in healthy, HIV-1-negative adults in UK and induced high magnitudes of HIVconsv-specific plurifunctional CD8+ T cells capable of in vitro HIV-1 inhibition. Here, we assessed the durability of these responses. METHODS: Vaccine recipients in trial HIV-CORE 002 were invited to provide a blood sample at 1 and 2 years after vaccination. Their PBMCs were tested in IFN-γ ELISPOT, 25-analyte Luminex, CFSE proliferation and intracellular cytokine staining assays, the last enhanced by HLA-peptide dextramer analysis. RESULTS: 12/12 (1 year) and 8/8 (2 years) returning subjects had median (range) of 990 (150-2495) and 763 (70-1745) IFN-γ SFU/106 PBMC specific for HIVconsv, respectively, and recognized 5 (1-6) out of 6 peptide pools at 2 years. Over one-half of the HIVconsv-specific cells expressed at least 3 functions IFN-γ, TNF-α and CD107a, and were capable of proliferation. Among dextramer-reactive cells, naïve, transitional, effector and terminally differentiated memory subsets were similarly represented. CONCLUSIONS: First generation HIVconsv vaccine induced human T cells, which were plurifunctional and persisted for at least 2 years. TRIAL REGISTRATION: ClinicalTrials.gov NCT01151319.


Asunto(s)
Adenovirus de los Simios/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Secuencia Conservada , VIH-1/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Estudios de Seguimiento , Antígenos HLA/metabolismo , Humanos , Especificidad de la Especie
9.
J Int AIDS Soc ; 20(1): 21171, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28537062

RESUMEN

INTRODUCTION: Vaccines may be key components of a curative strategy for HIV-1. We investigated whether a novel immunogen, HIVconsv, designed to re-direct T cell responses to conserved viral epitopes, could impact the HIV-1 reservoir in chronic antiretroviral therapy (ART)-treated subjects when delivered by modified vaccinia virus Ankara (MVA). METHODS: Nineteen virologically suppressed individuals were randomized to receive vaccinations with MVA.HIVconsv (5.5 × 107 plaque-forming units, pfu, n = 8; 2.2 × 108 pfu, n = 7) or placebo (n = 4) at 0, 4 and 12 weeks. Magnitude, breadth and antiviral function of vaccine-induced T cells, cell-associated HIV-1 DNA in circulating CD4+ T cells and residual viremia in plasma were measured before and after vaccination. RESULTS: 90% of subjects completed the vaccine regimen; there were no serious vaccine-related adverse events. The magnitude of HIVconsv-specific IFN-γ-secreting T cells was not significantly boosted in vaccinees when compared with placebos in ex vivo Elispot assays, due to greater than expected variation in HIV-specific T cell responses in the latter during the observation period. Ex vivo CD8+ T cell viral inhibitory capacity was modest but significantly increased post-vaccination with MVA.HIVconsv at the higher dose (p = 0.004) and was positively correlated with the frequency of HIVconsv-specific CD8+ CD107+ IFN-α± T cells (r = 0.57, p = 0.01). Total HIV-1 DNA and residual viral load did not change significantly from baseline in any group. CONCLUSIONS: Homologous prime-boost vaccination with MVA.HIVconsv was safe in HIV-positive ART-treated subjects but showed modest immunogenicity and did not significantly change the size of the viral reservoir. MVA.HIVconsv may be more effective when used in a heterologous prime-boost vaccination regimen and when combined with a latency-reversing agent. CLINICAL TRIALS REGISTRATION: NCT01024842.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/terapia , Inmunogenicidad Vacunal , Vacunas contra el SIDA/genética , Fármacos Anti-VIH/uso terapéutico , Secuencia Conservada/inmunología , Método Doble Ciego , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/genética , Humanos , Masculino , Linfocitos T/inmunología , Vacunas Sintéticas/inmunología , Virus Vaccinia , Carga Viral
10.
Mol Ther Methods Clin Dev ; 3: 16061, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27617268

RESUMEN

We are developing a pan-clade HIV-1 T-cell vaccine HIVconsv, which could complement Env vaccines for prophylaxis and be a key to HIV cure. Our strategy focuses vaccine-elicited effector T-cells on functionally and structurally conserved regions (not full-length proteins and not only epitopes) of the HIV-1 proteome, which are common to most global variants and which, if mutated, cause a replicative fitness loss. Our first clinical trial in low risk HIV-1-negative adults in Oxford demonstrated the principle that naturally mostly subdominant epitopes, when taken out of the context of full-length proteins/virus and delivered by potent regimens involving combinations of simian adenovirus and poxvirus modified vaccinia virus Ankara, can induce robust CD8(+) T cells of broad specificities and functions capable of inhibiting in vitro HIV-1 replication. Here and for the first time, we tested this strategy in low risk HIV-1-negative adults in Africa. We showed that the vaccines were well tolerated and induced high frequencies of broadly HIVconsv-specific plurifunctional T cells, which inhibited in vitro viruses from four major clades A, B, C, and D. Because sub-Saharan Africa is globally the region most affected by HIV-1/AIDS, trial HIV-CORE 004 represents an important stage in the path toward efficacy evaluation of this highly rational and promising vaccine strategy.

11.
PLoS One ; 9(7): e101591, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25007091

RESUMEN

TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee) adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1) and predominantly transient (<48 hours). Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range) of 633 (231-1533) post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate safety and good tolerability of the pSG2.HIVconsv DNA, ChAdV63.HIVconsv and MVA.HIVconsv vaccines and together with their high immunogenicity support their further development towards efficacy studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT01151319.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adenovirus de los Simios/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Virus Vaccinia/inmunología , Adenovirus de los Simios/genética , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Secuencia Conservada , Femenino , Vectores Genéticos , Células HEK293 , Anticuerpos Anti-VIH/sangre , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Masculino , Persona de Mediana Edad , Plásmidos/genética , Método Simple Ciego , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Replicación Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...