Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 24(10): 4561-4569, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35837859

RESUMEN

An imported case of monkeypox was diagnosed in December 2019 in a traveller returning from Nigeria to the UK. Subsequently, environmental sampling was performed at two adjoining single-room residences occupied by the patient and their sibling. Monkeypox virus DNA was identified in multiple locations throughout both properties, and monkeypox virus was isolated from several samples 3 days after the patient was last in these locations. Positive samples were identified following the use of both vacuum and surface sampling techniques; these methodologies allowed for environmental analysis of potentially contaminated porous and non-porous surfaces via real-time quantitative reverse transcriptase PCR analysis in addition to viral isolation to confirm the presence of infection-competent virus. This report confirms the potential for infection-competent monkeypox virus to be recovered in environmental settings associated with known positive cases and the necessity for rapid environmental assessment to reduce potential exposure to close contacts and the general public. The methods adopted in this investigation may be used for future confirmed cases of monkeypox in order to establish levels of contamination, confirm the presence of infection-competent material and to identify locations requiring additional cleaning.


Asunto(s)
Monkeypox virus , Mpox , ADN Viral , Brotes de Enfermedades , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Reino Unido
2.
Euro Surveill ; 23(50)2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30563591

RESUMEN

BackgroundThe recent global emergence and re-emergence of arboviruses has caused significant human disease. Common vectors, symptoms and geographical distribution make differential diagnosis both important and challenging. AimTo investigate the feasibility of metagenomic sequencing for recovering whole genome sequences of chikungunya and dengue viruses from clinical samples.MethodsWe performed metagenomic sequencing using both the Illumina MiSeq and the portable Oxford Nanopore MinION on clinical samples which were real-time reverse transcription-PCR (qRT-PCR) positive for chikungunya (CHIKV) or dengue virus (DENV), two of the most important arboviruses. A total of 26 samples with a range of representative clinical Ct values were included in the study.ResultsDirect metagenomic sequencing of nucleic acid extracts from serum or plasma without viral enrichment allowed for virus identification, subtype determination and elucidated complete or near-complete genomes adequate for phylogenetic analysis. One PCR-positive CHIKV sample was also found to be coinfected with DENV. ConclusionsThis work demonstrates that metagenomic whole genome sequencing is feasible for the majority of CHIKV and DENV PCR-positive patient serum or plasma samples. Additionally, it explores the use of Nanopore metagenomic sequencing for DENV and CHIKV, which can likely be applied to other RNA viruses, highlighting the applicability of this approach to front-line public health and potential portable applications using the MinION.


Asunto(s)
Virus Chikungunya/genética , Virus del Dengue/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuenciación Completa del Genoma , Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , Fiebre Chikungunya/sangre , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/aislamiento & purificación , Dengue/sangre , Dengue/diagnóstico , Virus del Dengue/aislamiento & purificación , Humanos , Metagenómica , Nanoporos , Serogrupo
3.
Front Microbiol ; 7: 18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26858699

RESUMEN

Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...