Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Crohns Colitis ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572716

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) shows some efficacy in treating patients with ulcerative colitis (UC), although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS: Patients ≥ 18 years old with mild to moderate active UC were randomly assigned to three weeks budesonide (9 mg) or placebo followed by four weekly infusions of a donor feces suspension. Two donors were selected based on microbiota composition, Treg induction and SCFA production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS: In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment (p=0.56) nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 (42%) of patients achieved (partial) remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response (80% of responders, p<0.05) but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION: In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in ulcerative colitis.

2.
Cell Host Microbe ; 30(4): 583-598.e8, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35421353

RESUMEN

Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal/métodos , Voluntarios Sanos , Humanos
4.
J Environ Qual ; 50(3): 694-705, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33955027

RESUMEN

Antibiotic use in animal husbandry is a potential entryway for antibiotics and antibiotic resistance genes (ARGs) to enter the environment through manure fertilizer application. The potential of anaerobic digestion (AD) to remove antibiotics and ARGs was investigated through tetracycline (TC) and sulfadimethoxine (SDM) additions into dairy manure digested for 44 d. This was the first study to evaluate antibiotics at concentrations quantified on-farm and relevant to field applications of manure. Triplicate treatments included a 1 mg L-1 TC spike, a 10 mg L-1 TC spike, a 1 mg L-1 SDM spike (SDM 1), a 10 mg L-1 SDM spike, a mixture of TC and SDM at 1 mg L-1 each (TC+SDM 1), and a manure-only treatment. The SDM spikes were reduced by >99% reduction during the AD processing, but TC additions had variable reductions (0-96%). Molecular analyses showed that decreases in tetM gene copies correlated with declines in TC; however, reductions in SDM concentration did not correlate with decreases in sul1 gene copy concentrations. The AD reactors containing 10 mg L-1 of TC and 10 mg L-1 of SDM both had CH4 production reductions of 7.8%, whereas no CH4 reduction was observed in other treatments (1 mg L-1 treatments). The study results were the first to confirm that AD can remove SDM when adding at concentrations observed in on-farm manure (<1 mg L-1 ) without compromising energy production. Because TC adsorbs to the solid particles and transforms into isomers, the decreases in TC concentrations were more variable and should be closely monitored.


Asunto(s)
Antibacterianos , Estiércol , Anaerobiosis , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Sulfadimetoxina
5.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531401

RESUMEN

We demonstrate that an assembly-independent and spike-in facilitated metagenomic quantification approach can be used to screen and quantify over 2,000 genes simultaneously, while delivering absolute gene concentrations comparable to those for quantitative PCR (qPCR). DNA extracted from dairy manure slurry, digestate, and compost was spiked with genomic DNA from a marine bacterium and sequenced using the Illumina HiSeq4000. We compared gene copy concentrations, in gene copies per mass of sample, of five antimicrobial resistance genes (ARGs) generated with (i) our quantitative metagenomic approach, (ii) targeted qPCR, and (iii) a hybrid quantification approach involving metagenomics and qPCR-based 16S rRNA gene quantification. Although qPCR achieved lower quantification limits, the metagenomic method avoided biases caused by primer specificity inherent to qPCR-based methods and was able to detect orders of magnitude more genes than is possible with qPCR assays. We used the approach to simultaneously quantify ARGs in the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the total abundance of tetracycline resistance genes was consistent across different stages of manure treatment on three farms, but different samples were dominated by different tetracycline resistance gene families.IMPORTANCE qPCR and metagenomics are central molecular techniques that have offered insights into biological processes for decades, from monitoring spatial and temporal gene dynamics to tracking ARGs or pathogens. Still needed is a tool that can quantify thousands of relevant genes in a sample as gene copies per sample mass or volume. We compare a quantitative metagenomic approach with traditional qPCR approaches in the quantification of ARG targets in dairy manure samples. By leveraging the benefits of nontargeted community genomics, we demonstrate high-throughput absolute gene quantification of all known ARG sequences in environmental samples.


Asunto(s)
Farmacorresistencia Microbiana/genética , Metagenómica , Bases de Datos de Ácidos Nucleicos , Dosificación de Gen , Reacción en Cadena de la Polimerasa , Resistencia a la Tetraciclina/genética
6.
J Dairy Sci ; 103(2): 1051-1071, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31837779

RESUMEN

United States dairy operations use antibiotics (primarily ß-lactams and tetracyclines) to manage bacterial diseases in dairy cattle. Antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARG) can be found in dairy manure and may contribute to the spread of antibiotic resistance (AR). Although ß-lactam residues are rarely detected in dairy manure, tetracycline residues are common and perhaps persistent. Generally, <15% of bacterial pathogen dairy manure isolates are ARB, although resistance to some antibiotics (e.g., tetracycline) can be higher. Based on available data, the prevalence of medically important ARB on dairy operations is generally static or may be declining for antibiotic-resistant Staphylococcus spp. Over 60 ARG can be found in dairy manure (including ß-lactam and tetracycline resistance genes), although correlations with antibiotic usage, residues, and ARB have been inconsistent, possibly because of sampling and analytical limitations. Manure treatment systems have not been specifically designed to mitigate AR, though certain treatments have some capacity to do so. Generally, well-managed aerobic compost treatments reaching higher peak temperatures (>60°C) are more effective at mitigating antibiotic residues than static stockpiles, although this depends on the antibiotic residue and their interactions. Similarly, thermophilic anaerobic digesters operating under steady-state conditions may be more effective at mitigating antibiotic residues than mesophilic or irregularly operated digesters or anaerobic lagoons. The number of ARB may decline during composting and digestion or be enriched as the bacterial communities in these systems shift, affecting relative ARG abundance or acquire ARG during treatment. Antibiotic resistance genes often persist through these systems, although optimal management and higher operating temperature may facilitate their mitigation. Less is known about other manure treatments, although separation technologies may be unique in their ability to partition antibiotic residues based on sorption and solubility properties. Needed areas of study include determining natural levels of AR in dairy systems, standardizing and optimizing analytical techniques, and more studies of operating on-farm systems, so that treatment system performance and actual human health risks associated with levels of antibiotic residues, ARB, and ARG found in dairy manure can be accurately assessed.


Asunto(s)
Antibacterianos/análisis , Bovinos , Residuos de Medicamentos/análisis , Farmacorresistencia Microbiana/genética , Contaminantes Ambientales/análisis , Genes Bacterianos , Estiércol , Animales , Compostaje , Industria Lechera , Utilización de Medicamentos , Restauración y Remediación Ambiental , Humanos , Estiércol/análisis , Staphylococcus aureus Resistente a Meticilina/genética , Resistencia a la Tetraciclina , Estados Unidos
7.
Environ Sci Technol ; 53(5): 2405-2415, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707579

RESUMEN

The use of antimicrobials by the livestock industry can lead to the release of unmetabolized antimicrobials and antimicrobial resistance genes (ARG) into the environment. However, the relationship between antimicrobial use, residual antimicrobials, and ARG prevalence within manure is not well understood, specifically across temporal and location-based scales. The current study determined ARG abundance in untreated manure blend pits and long-term storage systems from 11 conventional and one antimicrobial-free dairy farms in the Northeastern U.S. at six times over one-year. Thirteen ARGs corresponding to resistance mechanisms for tetracyclines, macrolides-lincosamides, sulfonamides, aminoglycosides, and ß-lactams were quantified using a Custom qPCR Array or targeted qPCR. ARG abundance differed between locations, suggesting farm specific microbial resistomes. ARG abundance also varied temporally. Manure collected during the winter contained lower ARG abundances. Overall, normalized ARG concentrations did not correlate to average antimicrobial usage or tetracycline concentrations across farms and collection dates. Of the 13 ARGs analyzed, only four genes showed a higher abundance in samples from conventional farms and eight ARGs exhibited similar normalized concentrations in the conventional and antimicrobial-free farm samples. No clear trends were observed in ARG abundance between dairy manure obtained from blend pits and long-term storage collected during two drawdown periods (fall and spring), although higher ARG abundances were generally observed in spring compared to fall. This comprehensive study informs future studies needed to determine the contributions of ARGs from dairy manure to the environment.


Asunto(s)
Antiinfecciosos , Estiércol , Animales , Antibacterianos , Farmacorresistencia Bacteriana , Granjas , Genes Bacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...