Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oecologia ; 198(3): 605-618, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35244774

RESUMEN

Mortality and predation of tagged fishes present a serious challenge to interpreting results of acoustic telemetry studies. There is a need for standardized methods to identify predated individuals and reduce the impacts of "predation bias" on results and conclusions. Here, we use emerging approaches in machine learning and acoustic tag technology to classify out-migrating Atlantic salmon (Salmo salar) smolts into different fate categories. We compared three methods of fate classification: predation tag pH sensors and detection data, unsupervised k-means clustering, and supervised random forest combined with tag pH sensor data. Random forest models increased predation estimates by 9-32% compared to relying solely on pH sensor data, while clustering reduced estimates by 3.5-30%. The greatest changes in fate class estimates were seen in years with large class imbalance (one or more fate classes underrepresented compared to the others) or low model accuracy. Both supervised and unsupervised approaches were able to classify smolt fate; however, in-sample model accuracy improved when using tag sensor data to train models, emphasizing the value of incorporating such sensors when studying small fish. Sensor data may not be sufficient to identify predation in isolation due to Type I and Type II error in predation sensor triggering. Combining sensor data with machine learning approaches should be standard practice to more accurately classify fate of tagged fish.


Asunto(s)
Conducta Predatoria , Salmo salar , Acústica , Migración Animal , Animales , Aprendizaje Automático , Ríos
2.
Ecol Evol ; 12(2): e8588, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154656

RESUMEN

The availability and investment of energy among successive life-history stages is a key feature of carryover effects. In migratory organisms, examining how both winter and spring experiences carryover to affect breeding activity is difficult due to the challenges in tracking individuals through these periods without impacting their behavior, thereby biasing results.Using common eiders Somateria mollissima, we examined whether spring conditions at an Arctic breeding colony (East Bay Island, Nunavut, Canada) can buffer the impacts of winter temperatures on body mass and breeding decisions in birds that winter at different locations (Nuuk and Disko Bay, Greenland, and Newfoundland, Canada; assessed by analyzing stable isotopes of 13-carbon in winter-grown claw samples). Specifically, we used path analysis to examine how wintering and spring environmental conditions interact to affect breeding propensity (a key reproductive decision influencing lifetime fitness in female eiders) within the contexts of the timing of colony arrival, pre-breeding body mass (body condition), and a physiological proxy for foraging effort (baseline corticosterone).We demonstrate that warmer winter temperatures predicted lower body mass at arrival to the nesting colony, whereas warmer spring temperatures predicted earlier arrival dates and higher arrival body mass. Both higher body mass and earlier arrival dates of eider hens increased the probability that birds would initiate laying (i.e., higher breeding propensity). However, variation in baseline corticosterone was not linked to either winter or spring temperatures, and it had no additional downstream effects on breeding propensity.Overall, we demonstrate that favorable pre-breeding conditions in Arctic-breeding common eiders can compensate for the impact that unfavorable wintering conditions can have on breeding investment, perhaps due to greater access to foraging areas prior to laying.

3.
Conserv Physiol ; 9(1): coab090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858598

RESUMEN

'The Blob', a mass of anomalously warm water in the Northeast Pacific Ocean peaking from 2014 to 2016, caused a decrease in primary productivity with cascading effects on the marine ecosystem. Among the more obvious manifestations of the event were seabird breeding failures and mass mortality events. Here, we used corticosterone in breast feathers (fCort), grown in the winter period during migration, as an indicator of nutritional stress to investigate the impact of the Blob on two sentinel Pacific auk species (family Alcidae). Feathers were collected from breeding females over 8 years from 2010 to 2017, encompassing the Blob period. Since Pacific auks replace body feathers at sea during the migratory period, measures of fCort provide an accumulated measure of nutritional stress or allostatic load during this time. Changes in diet were also measured using δ15N and δ13C values from feathers. Relative to years prior to the Blob, the primarily zooplanktivorous Cassin's auklets (Ptychoramphus aleuticus) had elevated fCort in 2014-2017, which correlated with the occurrence of the Blob and a recovery period afterwards, with relatively stable feather isotope values. In contrast, generalist rhinoceros auklets (Cerorhinca monocerata) displayed stable fCort values across years and increased δ15N values during the Blob. As marine heatwaves increase in intensity and frequency due to climate change, this study provides insight into the variable response of Pacific auks to such phenomena and suggests a means for monitoring population-level responses to climatological variation.

4.
Evol Appl ; 14(8): 2134-2144, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429754

RESUMEN

Biological invasions are important causes of biodiversity loss, particularly in remote islands. Brown trout (Salmo trutta) have been widely introduced throughout the Southern Hemisphere, impacting endangered native fauna, particularly galaxiid fishes, through predation and competition. However, due to their importance for sport fishing and aquaculture farming, attempts to curtail the impacts of invasive salmonids have generally been met with limited support and the best prospects for protecting native galaxiids is to predict where and how salmonids might disperse. We analysed 266 invasive brown trout from 14 rivers and ponds across the Falkland Islands as well as 32 trout from three potential source populations, using a panel of 592 single nucleotide polymorphisms (SNPs) and acoustic tagging, to ascertain their origins and current patterns of dispersal. We identified four genetically distinct clusters with high levels of genetic diversity and low admixture, likely reflecting the different origins of the invasive brown trout populations. Our analysis suggests that many trout populations in the Falklands may have originated from one of the donor populations analysed (River Wey). The highest genetic diversity was observed in the rivers with the greatest number of introductions and diverse origins, while the lowest diversity corresponded to a location without documented introductions, likely colonized by natural dispersal. High levels of gene flow indicated widespread migration of brown trout across the Falkland Islands, likely aided by anadromous dispersal. This is supported by data from acoustically tagged fish, three of which were detected frequently moving between two rivers ~26 km apart. Our results suggest that, without containment measures, brown trout may invade the last remaining refuges for the native endangered Aplochiton spp. We provide new insights into the origin and dispersal of invasive brown trout in the Falkland Islands that can pave the way for a targeted approach to limit their impact on native fish fauna.

5.
Sci Rep ; 11(1): 11917, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099778

RESUMEN

In 1954, brown trout were introduced to the Kerguelen archipelago (49°S, 70°E), a pristine, sub-Antarctic environment previously devoid of native freshwater fishes. Trout began spreading rapidly via coastal waters to colonize adjacent watersheds, however, recent and unexpectedly the spread has slowed. To better understand the ecology of the brown trout here, and why their expansion has slowed, we documented the marine habitat use, foraging ecology, and environmental conditions experienced over one year by 50 acoustically tagged individuals at the colonization front. Trout mainly utilized the marine habitat proximate to their tagging site, ranging no further than 7 km and not entering any uncolonized watersheds. Nutritional indicators showed that trout were in good condition at the time of tagging. Stomach contents and isotope signatures in muscle of additional trout revealed a diet of amphipods (68%), fish (23%), isopods (6%), and zooplankton (6%). The small migration distances observed, presence of suitable habitat, and rich local foraging opportunities suggest that trout can achieve their resource needs close to their home rivers. This may explain why the expansion of brown trout at Kerguelen has slowed.


Asunto(s)
Ecosistema , Conducta Alimentaria/fisiología , Especies Introducidas , Trucha/fisiología , Migración Animal/fisiología , Animales , Regiones Antárticas , Ecología , Agua Dulce , Geografía , Islas , Densidad de Población , Agua de Mar , Temperatura
6.
Environ Pollut ; 279: 116928, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33774363

RESUMEN

Seabirds are wide-ranging organisms often used to track marine pollution, yet the effect of migration on exposure over the annual cycle is often unclear. We used solar geolocation loggers and stable isotope analysis to study the effects of post breeding dispersal and diet on persistent organic pollutant (POP) and mercury (Hg) burdens in rhinoceros auklets, Cerorhinca monocerata, breeding on islands along the Pacific Coast of Canada. Hg and four classes of POPs were measured in auklet eggs: organochlorine insecticides (OCs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluoralkyl substances (PFASs). Stable isotope values of adult breast feathers grown during winter were used in conjunction with geolocation to elucidate adult wintering latitude. Wintering latitude was the most consistent and significant predictor of some POP and of Hg concentrations in eggs. The magnitude and pattern of exposure varied by contaminant, with ∑PCBs, ∑PBDEs and DDE decreasing with wintering latitude, and mirex, perfluoro-n-tridecanoic acid, and Hg increasing with latitude. We suggest that concentrations of these contaminants in rhinoceros auklet eggs are influenced by variation in uptake at adult wintering locations related to anthropogenic inputs and oceanic and atmospheric transport.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Animales , Canadá , Monitoreo del Ambiente , Éteres Difenilos Halogenados , Islas , Perisodáctilos , Contaminantes Orgánicos Persistentes
7.
PLoS One ; 15(11): e0240056, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166314

RESUMEN

We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (FꞌST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.


Asunto(s)
Migración Animal/fisiología , Charadriiformes/genética , Conservación de los Recursos Naturales , Variación Genética/genética , Aislamiento Social , Animales , Aves , Cruzamiento , Charadriiformes/fisiología , Ecosistema , Genética de Población , Geografía , Océano Pacífico , Dinámica Poblacional
8.
Artículo en Inglés | MEDLINE | ID: mdl-32535235

RESUMEN

When successive stages of an organism's life-history overlap, conflicts and trade-offs can emerge due to competition among physiological pathways. For example, long periods of sustained locomotion in migrating birds are supported by the androgenic up-regulation of aerobic factors, such as new red blood cell production and hematocrit. However, towards the end of migration, many female birds begin up-regulating 17ß-estradiol (E2) to support vitellogenesis and egg production, but E2 secretion is known to have suppressive effects on red blood cell production (anti-erythropoiesis). We explored potential trade-offs between factors related to aerobic performance (hematocrit, reticulocyte index) and the expression of factors related to E2-mediated vitellogenesis (i.e. yolk precursor production) in female macaroni penguins (Eudyptes chrysolophus), a species in which the physiologies controlling egg production and migratory activity run simultaneously (e.g. females experience a migratory conflict). We collected blood samples from penguins immediately upon their return to the colony, prior to egg laying. Hematocrit was elevated when the penguins returned to the colony (50.05% ± 3.40 SD), which is similar to pre-laying values observed in other migratory bird species. Furthermore, mean reticulocyte levels were elevated (34.87% ± 2.34), which is the highest level yet recorded in birds. Similarly, both plasma vitellogenin and yolk-targeted very low density lipoprotein levels were upregulated (2.30 ± 0.06 µg Zn ml-1, and 9.70 ± 0.19 mmol l-1, respectively), indicating that penguins were reproductively active and producing eggs during migration and upon arrival on land. As predicted, a negative relationship between hematocrit and plasma vitellogenin was found, but we found no evidence to suggest that birds were experiencing reproductive anemia. Alternatively, we attribute the negative relationship to a hemodilution effect of yolk precursor secretion into circulation. It appears that female macaroni penguins are able to preserve hematocrit levels and new red blood cell production when migratory activity overlaps with reproductive processes.


Asunto(s)
Migración Animal/fisiología , Reproducción/fisiología , Spheniscidae/fisiología , Andrógenos/sangre , Animales , Estradiol , Femenino , Hematócrito , Consumo de Oxígeno/fisiología , Spheniscidae/sangre , Vitelogeninas/sangre
9.
Physiol Biochem Zool ; 93(3): 210-226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32216701

RESUMEN

The past several decades have ushered in a golden age in the study of migration biology, leading to a wealth of descriptive articles that characterize various aspects of migration and its implications for individuals, populations, and ecosystems. However, relatively few studies have adopted an experimental approach to the study of migration, and fewer still have combined lab and field experiments to glean insights into the mechanisms underlying variation in migration behavior and success. Understanding the proximate and ultimate causes of migration timing, energy allocation and optimization, migration success, and fitness is important to aid the conservation and management of wildlife populations by establishing appropriate protections or managing environmental conditions that influence migration. With recent technological advances and miniaturization of animal-borne electronic tracking devices, as well as ground-, water-, and space-based telemetry infrastructure, researchers have the tools necessary to experimentally test hypotheses central to the mechanics of migrations and individual variation therein. By pairing physiological measurements, molecular analyses, and other approaches within an experimental framework, there is the potential to understand not only how animal migrations function but also what differentiates successful migrations from failed migrations and the associated fitness implications. Experimental approaches to migration biology are particularly important, as they will help us to better comprehend and hopefully predict animal responses to environmental and anthropogenic changes by isolating confounding variables that challenge inferences from observations.


Asunto(s)
Migración Animal/fisiología , Invertebrados/fisiología , Fisiología/métodos , Vertebrados/fisiología , Zoología/métodos , Animales
10.
J Fish Biol ; 96(2): 469-479, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31823365

RESUMEN

We used acoustic telemetry to quantify permit Trachinotus falcatus habitat use and connectivity in proximity to the Florida Keys, USA, and assessed these patterns relative to current habitat and fisheries management practices. From March 2017 to June 2018, 45 permit tagged within 16 km of the lower Florida Keys were detected at stationary acoustic receivers throughout the south Florida region, the majority of which remained within the Special Permit Zone, where more extensive fisheries harvest regulations are implemented. There was a high level of connectivity between nearshore flats (i.e., <3 m water depth) and the Florida reef tract (FRT; 15-40 m water depth), with 75% of individuals detected in both habitats. These locations probably function primarily as foraging and spawning habitats, respectively. Permit occupancy on the FRT peaked during the months of March-September, with the highest number of individuals occurring there in April and May. Specific sites on the FRT were identified as potentially important spawning locations, as they attracted a high proportion of individuals that exhibited frequent visits with high residency durations. There were also significant positive relationships between seasonal habitat-use metrics on the FRT and an empirical permit gonadosomatic index. Large aggregations of permit at spawning sites on the FRT are potentially vulnerable to the effects of fishing (including predation during catch and release) at a critical point in their life cycle. These data on permit space use and movement, coupled with knowledge of stressors on their ecology, provide insights for implementing science-based strategic management plans.


Asunto(s)
Ecosistema , Explotaciones Pesqueras/organización & administración , Peces/clasificación , Peces/fisiología , Estaciones del Año , Animales , Conservación de los Recursos Naturales , Florida , Conducta Predatoria
11.
Artículo en Inglés | MEDLINE | ID: mdl-31726105

RESUMEN

White sturgeon are the largest freshwater fish in North America and are the focus of an intense catch-and-release (C&R) fishery; the effects are largely unknown. We assessed the effect of fight and handling time, water temperature, river discharge rate, and fish size on physiological and reflex impairment responses of wild white sturgeon to angling. Sixty of these fish were tagged with acoustic transmitters to assess survival and post-release behaviour. Survival was high (100%). Water temperature and discharge influenced post-capture blood physiology. Specifically, lactate, chloride, and cortisol concentrations were elevated in individuals fought longer, and captured at higher water temperatures and river discharge. Cortisol was affected by fish size, with lower concentrations found in larger individuals. Only lactate and chloride were positively related to reflex impairment scores. Post-release movements were correlated with physiological state, fight characteristics and the environment. Specifically, higher blood lactate and chloride and those with longer fight times moved shorter distances after release. Contrastingly, higher levels of circulating glucose and potassium, as well as larger fish captured during periods of high discharge moved longer distances. Sturgeon tended to move shorter distances and at slower rates when reflex impairment was high, although reflex impairment in general did not explain a significant proportion of the variance in any movement metric. Our results show intriguing variance in the physiological and behavioural response of individual white sturgeon to C&R angling, with some degree of environmental dependence, and highlights the importance of understanding drivers of such variation when managing fisheries.


Asunto(s)
Conducta Animal , Explotaciones Pesqueras/normas , Peces/fisiología , Hidrocortisona/metabolismo , Mortalidad/tendencias , Reflejo/fisiología , Estrés Fisiológico , Animales , Actividades Humanas , Humanos , Ríos , Temperatura , Contaminantes Químicos del Agua/toxicidad
12.
Gen Comp Endocrinol ; 268: 64-70, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30056135

RESUMEN

The measurement of corticosterone levels in feathers (fCort) is gaining recognition as an effective means for describing links between stages of the annual cycle in birds. Many seabirds are especially good models for exploring these links, or carryover effects, due to their migratory behavior and reproductive investment in a single-egg clutch. Here, we measure fCort in Cassin's auklet (Ptychoramphus aleuticus) breast feathers at two colonies in British Columbia during 2011, a year of favorable oceanographic conditions, and examine its relationship with egg size. These feathers are grown at sea during the late winter period, 1-2 months prior to egg laying. Assuming that fCort provides some measure of nutritional stress and hypothalamic-pituitary-adrenal axis activity during feather growth, we predicted that fCort would be positively correlated with egg size via increased support for foraging activity during the nutritionally demanding molt stage. We also analyzed the δ13C and δ15N stable isotope content of breast feathers, measures commonly used to characterize seabird diet composition. Contrary to prediction, neither fCort nor stable isotope ratios were good predictors of egg size. Our results appear to conflict with two previous studies on alcids in which fCort and stable isotopes showed clear links with egg size; however, both studies were conducted in years when oceanographic and foraging conditions were poor. Under these conditions, upregulation of corticosterone may be needed to mediate the energetic tradeoffs between self-maintenance and reproduction, supporting increased foraging effort and thus increasing both the likelihood of reproduction and large egg size. However, when foraging conditions are favorable, we suggest that such tradeoffs and associated physiological constraints are minimized and regulation of egg size may be effectively independent of circulating corticosterone levels and diet type.


Asunto(s)
Cruzamiento/métodos , Corticosterona/metabolismo , Plumas/metabolismo , Muda/fisiología , Óvulo/química , Animales , Aves
13.
Ecol Evol ; 7(21): 8742-8752, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29177032

RESUMEN

Although assessments of winter carryover effects on fitness-related breeding parameters are vital for determining the links between environmental variation and fitness, direct methods of determining overwintering distributions (e.g., electronic tracking) can be expensive, limiting the number of individuals studied. Alternatively, stable isotope analysis in specific tissues can be used as an indirect means of determining individual overwintering areas of residency. Although increasingly used to infer the overwintering distributions of terrestrial birds, stable isotopes have been used less often to infer overwintering areas of marine birds. Using Arctic-breeding common eiders, we test the effectiveness of an integrated stable isotope approach (13-carbon, 15-nitrogen, and 2-hydrogen) to infer overwintering locations. Knowing the overwinter destinations of eiders from tracking studies at our study colony at East Bay Island, Nunavut, we sampled claw and blood tissues at two known overwintering locations, Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct tissue-specific isotopic profiles. We then compared the isotope profiles of tissues collected from eiders upon their arrival at our breeding colony, and used a k-means cluster analysis approach to match arriving eiders to an overwintering group. Samples from the claws of eiders were most effective for determining overwinter origin, due to this tissue's slow growth rate relative to the 40-day turnover rate of blood. Despite taking an integrative approach using multiple isotopes, k-means cluster analysis was most effective when using 13-carbon alone to assign eiders to an overwintering group. Our research demonstrates that it is possible to use stable isotope analysis to assign an overwintering location to a marine bird. There are few examples of the effective use of this technique on a marine bird at this scale; we provide a framework for applying this technique to detect changes in the migration phenology of birds' responses to rapid changes in the Arctic.

14.
Biol Lett ; 13(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28855413

RESUMEN

The period of first feeding, when young salmonid fishes emerge from natal stream beds, is one fraught with predation risk. Experiments conducted in semi-natural stream mesocosms have shown that growth hormone transgenic salmonids are at greater risk of predation than their non-transgenic siblings, due partly to the higher metabolic demands associated with transgenesis, which force risky foraging behaviours. This raises questions as to whether there are differences in the swim-performance of transgenic and non-transgenic fishes surviving predation experiments. We tested this hypothesis in wild-origin rainbow trout (Oncorhynchus mykiss) that were reared from first feeding in semi-natural stream mesocosms characterized by complex hydrodynamics, the presence of predators and oligotrophic conditions. Using an open-flume raceway, we swam fish and measured their capacity for burst-swimming against a sustained flow. We found a significant genotype effect on burst-performance, with transgenic fish sustaining performance longer than their wild-type siblings, both in predator and predator-free stream segments. Importantly, this effect occurred before differences in growth were discernable. We also found that mesocosm-reared fish had greater burst-performance than fish reared in the controlled hatchery environment, despite the latter being unexposed to predators and having abundant food. Our results suggest a potential interaction between predation and metabolic priming, which leads to greater burst capacity in transgenic trout.


Asunto(s)
Natación , Animales , Animales Modificados Genéticamente , Hormona del Crecimiento , Oncorhynchus mykiss , Conducta Predatoria
15.
Conserv Physiol ; 5(1): cox050, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928974

RESUMEN

Selective harvest policies have been implemented in North America to enhance the conservation of Pacific salmon (Oncorhynchus spp.) stocks, which has led to an increase in the capture and release of fish by all fishing sectors. Despite the immediate survival benefits, catch-and-release results in capture stress, particularly at high water temperatures, and this can result in delayed post-release mortality minutes to days later. The objective of this study was to evaluate how different water temperatures influenced heart rate disturbance and recovery of wild sockeye salmon (Oncorhynchus nerka) following fisheries interactions (i.e. exhaustive exercise). Heart rate loggers were implanted into Fraser River sockeye salmon prior to simulated catch-and-release events conducted at three water temperatures (16°C, 19°C and 21°C). The fisheries simulation involved chasing logger-implanted fish in tanks for 3 min, followed by a 1 min air exposure. Neither resting nor routine heart rate differed among temperature treatments. In response to the fisheries simulation, peak heart rate increased with temperature (16°C = 91.3 ± 1.3 beats min-1; 19°C = 104.9 ± 2.0 beats min-1 and 21°C = 117 ± 1.3 beats min-1). Factorial heart rate and scope for heart rate were highest at 21°C and lowest at 16°C, but did not differ between 19°C and 21°C. Temperature affected the initial rate of cardiac recovery but not the overall duration (~10 h) such that the rate of energy expenditure during recovery increased with temperature. These findings support the notion that in the face of climate change, efforts to reduce stress at warmer temperatures will be necessary if catch-and-release practices are to be an effective conservation strategy.

16.
Environ Pollut ; 226: 277-287, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28392239

RESUMEN

Although many studies have investigated organohalogenated contaminants (OHCs) in yolk, little is known about the mechanisms and timing of transfer of OHCs from the female to the egg. Vitellogenin, a yolk precursor, has been suggested to play a role in this transport. We here report for the first time the temporal changes in OHC and an index of vitellogenin concentrations in female plasma from the pre-laying period to clutch completion in free-living birds: the southern rockhopper penguin (Eudyptes chrysocome chrysocome) breeding in the Falkland/Malvinas Islands. In addition, OHC concentrations in the corresponding clutches were analysed. OHC concentrations in female plasma and in the yolk of both the first (A-) and the second (B-)eggs followed a similar pattern, with hexachlorobenzene (HCB) > Σpolychlorinated biphenyls (PCBs) > Σdichlorodiphenyltrichloroethanes (DDTs) > Σmethoxylated polybrominated diphenyl ethers (MeO-PBDEs) > Σchlordanes (CHLs) > Σpolybrominated diphenyl ethers (PBDEs) ≈ Σhexachlorocyclohexanes (HCHs). The higher concentrations of MeO-PBDEs compared to PBDEs indicate a diet containing naturally-produced MeO-PBDEs. All OHC compounds except for PBDEs increased from the pre-laying period to A-egg laying and subsequently declined from A-egg laying to B-egg laying, and female plasma vitellogenin showed the same pattern. For ΣPCBs and ΣMeO-PBDEs, we found positive correlations between female plasma during A-egg laying and both eggs, and for HCB between female plasma and A-eggs only. During pre-laying, only ΣMeO-PBDEs correlated between both eggs and female plasma, and no correlations between OHC concentrations in eggs and female plasma were found during B-egg laying, highlighting that maternal transfer of OHCs is time- and compound-specific. Finally, female vitellogenin concentrations did not significantly correlate with any OHC compounds in either female plasma or eggs, and our results therefore did not confirm the suggested role of vitellogenin in the maternal transfer of OHC molecules into their eggs.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo , Hidrocarburos Halogenados/metabolismo , Óvulo/metabolismo , Spheniscidae/sangre , Vitelogeninas/metabolismo , Animales , DDT/metabolismo , Contaminantes Ambientales/sangre , Femenino , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/metabolismo , Hexaclorobenceno/análisis , Hexaclorobenceno/metabolismo , Hidrocarburos Halogenados/sangre , Éteres Fenílicos , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo
17.
Ecol Appl ; 27(4): 1031-1049, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28295789

RESUMEN

This paper reviews the use of acoustic telemetry as a tool for addressing issues in fisheries management, and serves as the lead to the special Feature Issue of Ecological Applications titled Acoustic Telemetry and Fisheries Management. Specifically, we provide an overview of the ways in which acoustic telemetry can be used to inform issues central to the ecology, conservation, and management of exploited and/or imperiled fish species. Despite great strides in this area in recent years, there are comparatively few examples where data have been applied directly to influence fisheries management and policy. We review the literature on this issue, identify the strengths and weaknesses of work done to date, and highlight knowledge gaps and difficulties in applying empirical fish telemetry studies to fisheries policy and practice. We then highlight the key areas of management and policy addressed, as well as the challenges that needed to be overcome to do this. We conclude with a set of recommendations about how researchers can, in consultation with stock assessment scientists and managers, formulate testable scientific questions to address and design future studies to generate data that can be used in a meaningful way by fisheries management and conservation practitioners. We also urge the involvement of relevant stakeholders (managers, fishers, conservation societies, etc.) early on in the process (i.e., in the co-creation of research projects), so that all priority questions and issues can be addressed effectively.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Peces , Telemetría/métodos , Animales , Telemetría/instrumentación
18.
Proc Biol Sci ; 283(1840)2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27708146

RESUMEN

When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18-57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration-reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration-reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD.


Asunto(s)
Migración Animal , Óvulo/fisiología , Reproducción/fisiología , Spheniscidae/fisiología , Animales , Tamaño de la Nidada , Filogenia
19.
Conserv Physiol ; 4(1): cow031, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766153

RESUMEN

White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...