Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 11: 565236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193333

RESUMEN

Chimeric Antigen Receptor-T cells (CAR-T) are considered novel biological agents, designed to selectively attack cancer cells expressing specific antigens, with demonstrated clinical activity in patients affected with relapsed/refractory B-cell malignancies. In consideration of their complexity, the use of CAR-T requires dedicated clinical setting and health care practitioners with expertise in the selection, treatment, and management of toxicities and side effects. Such issue appears particularly important when contextualized in the rapid progress of CAR-T cell treatment, translating into a constant need of updating and evolution. Moreover, the clinical grade manufacturing of CAR-T cells is complex and implies articulated regulatory and organizational aspects. The main goal of this review is to summarize and provide an accurate analysis of the clinical, logistic, and regulatory requirements of CAR-T cell centers. Finally, we describe a new occupational figure called "CAR-T specialist" devoted to the establishment and coordination of the required facilities and regulatory landscape in the context of cancer centers.


Asunto(s)
Antígenos de Neoplasias/inmunología , Trasplante de Células/efectos adversos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Cuidados Posteriores/métodos , Antígenos CD19/inmunología , Donantes de Sangre/legislación & jurisprudencia , Trasplante de Células/legislación & jurisprudencia , Personal de Salud/educación , Humanos , Inmunoterapia Adoptiva/legislación & jurisprudencia , Selección de Paciente , Trasplantes , Microambiente Tumoral/inmunología
2.
Cancers (Basel) ; 12(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575838

RESUMEN

Malignant melanoma is the third most common type of tumor that causes brain metastases. Patients with cerebral involvement have a dismal prognosis and their treatment is an unmet medical need. Brain involvement is a multistep process involving several signaling pathways such as Janus kinase/signal Transducer and Activator of Transcription (JAK/STAT), Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT), Vascular Endothelial Growth Factor and Phosphatase and Tensin Homolog (PTEN). Recently therapy that targets the MAPK signaling (BRAF/MEK inhibitors) and immunotherapy (anti-CTLA4 and anti-PD1 agents) have changed the therapeutic approaches to stage IV melanoma. In contrast, there are no solid data about patients with brain metastases, who are usually excluded from clinical trials. Retrospective data showed that BRAF-inhibitors, alone or in combination with MEK-inhibitors have interesting clinical activity in this setting. Prospective data about the combinations of BRAF/MEK inhibitors have been recently published, showing an improved overall response rate. Short intracranial disease control is still a challenge. Several attempts have been made in order to improve it with combinations between local and systemic therapies. Immunotherapy approaches seem to retain promising activity in the treatment of melanoma brain metastasis as showed by the results of clinical trials investigating the combination of anti-CTL4 (Ipilimumab) and anti-PD1(Nivolumab). Studies about the combination or the sequential approach of target therapy and immunotherapy are ongoing, with immature results. Several clinical trials are ongoing trying to explore new approaches in order to overcome tumor resistance. At this moment the correct therapeutic choices for melanoma with intracranial involvement is still a challenge and new strategies are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...