Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Rev ; : 1-38, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38963129

RESUMEN

Advances in the field of bioactivation have significantly contributed to our understanding and prediction of drug-induced liver injury (DILI). It has been established that many adverse drug reactions, including DILI, are associated with the formation and reactivity of metabolites. Modern methods allow us to detect and characterize these reactive metabolites in earlier stages of drug development, which helps anticipate and circumvent the potential for DILI. Improved in silico models and experimental techniques that better reflect in vivo environments are enhancing predictive capabilities for DILI risk. Further, studies on the mechanisms of bioactivation, including enzyme interactions and the role of individual genetic differences, have provided valuable insights for drug optimizations. Cumulatively, this progress is continually refining our approaches to drug safety evaluation and personalized medicine.

2.
Drug Metab Rev ; 55(4): 301-342, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737116

RESUMEN

This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.


Asunto(s)
Biotransformación , Humanos
3.
Drug Metab Rev ; 55(4): 267-300, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37608698

RESUMEN

With the 50th year mark since the launch of Drug Metabolism and Disposition journal, the field of drug metabolism and bioactivation has advanced exponentially in the past decades (Guengerich 2023).This has, in a major part, been due to the continued advances across the whole spectrum of applied technologies in hardware, software, machine learning (ML), and artificial intelligence (AI). LC-MS platforms continue to evolve to support key applications in the field, and automation is also improving the accuracy, precision, and throughput of these supporting assays. In addition, sample generation and processing is being aided by increased diversity and quality of reagents and bio-matrices so that what is being analyzed is more relevant and translatable. The application of in silico platforms (applied software, ML, and AI) is also making great strides, and in tandem with the more traditional approaches mentioned previously, is significantly advancing our understanding of bioactivation pathways and how these play a role in toxicity. All of this continues to allow the area of bioactivation to evolve in parallel with associated fields to help bring novel or improved medicines to patients with urgent or unmet needs.Shuai Wang and Cyrus Khojasteh, on behalf of the authors.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Espectrometría de Masas
4.
Drug Metab Dispos ; 51(6): 782-791, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36921993

RESUMEN

The anti-hypertensive agent hydralazine is a time-dependent inhibitor of the cytosolic drug-metabolizing enzyme aldehyde oxidase (AO). Glutathione (GSH) was found to suppress the inhibition of AO by hydralazine in multiple enzyme sources (human liver and kidney cytosol, human liver S9, rat liver S9, and recombinant human AO) and with different AO substrates (zoniporide, O6 -benzylguanine, and dantrolene). Hydralazine-induced AO inactivation was unaffected when GSH was added to the incubation mixture after pre-incubation of hydralazine with AO (rather than during the pre-incubation), suggesting that GSH traps a hydralazine reactive intermediate prior to enzyme inactivation. Consistent with previous reports of 1-phthalazylmercapturic acid formation when hydralazine was incubated with N-acetylcysteine, we detected a metabolite producing an MS/MS spectrum consistent with a 1-phthalazyl-GSH conjugate. O6 -Benzylguanine, an AO substrate, did not protect against hydralazine-induced AO inactivation, implying that hydralazine does not compete with O6 -benzylguanine for binding to the AO active site. Catalase also failed to protect AO from hydralazine-induced inactivation, suggesting that hydrogen peroxide is not involved. However, an allosteric AO inhibitor (thioridazine) offered some protection, indicating a catalytic role for AO in the bioactivation of hydralazine. AO inhibition by phthalazine (a substrate and inhibitor of AO and a metabolite of hydralazine) was unaffected by the presence of GSH. GSH also prevented hydralazine from inhibiting the nitro-reduction of dantrolene by AO. Furthermore, the GSH-hydralazine combination stimulated dantrolene reduction. Phthalazine inhibited only oxidation reactions, not reduction of dantrolene. Together, these results support the hypothesis that hydralazine is converted to a reactive intermediate that inactivates AO. SIGNIFICANCE STATEMENT: These studies suggest that a reactive intermediate of hydralazine plays a primary role in the mechanism of aldehyde oxidase (AO) inactivation. Inactivation was attenuated by glutathione and unaffected by catalase. Phthalazine (hydralazine metabolite) inhibited AO regardless of the presence of glutathione; however, phthalazine inhibited only oxidation reactions, while hydralazine inhibited both oxidation and reduction reactions. This report advances our mechanistic understanding of hydralazine as an AO inhibitor and provides information to facilitate appropriate use of hydralazine when probing AO metabolism.


Asunto(s)
Aldehído Oxidasa , Espectrometría de Masas en Tándem , Ratas , Animales , Humanos , Aldehído Oxidasa/metabolismo , Catalasa , Dantroleno , Hidralazina/farmacología , Ftalazinas/metabolismo , Glutatión
5.
Chem Res Toxicol ; 35(9): 1467-1481, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36048877

RESUMEN

Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 µM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 µM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.


Asunto(s)
COVID-19 , Activación Metabólica , Benzamidas , Catálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , NADP/metabolismo , Piperidinas , Cianuro de Potasio , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Piridinas , Tiazoles
6.
Drug Metab Rev ; 54(3): 207-245, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35815654

RESUMEN

Biotransformation field is constantly evolving with new molecular structures and discoveries of metabolic pathways that impact efficacy and safety. Recent review by Kramlinger et al. (2022) nicely captures the future (and the past) of highly impactful science of biotransformation (see the first article). Based on the selected articles, this review was categorized into three sections: (1) new modalities biotransformation, (2) drug discovery biotransformation, and (3) drug development biotransformation (Table 1).


Asunto(s)
Descubrimiento de Drogas , Biotransformación , Humanos , Inactivación Metabólica
7.
Drug Metab Rev ; 54(3): 246-281, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876116

RESUMEN

This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (see references). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.[Table: see text].


Asunto(s)
Microsomas Hepáticos , Biotransformación , Humanos , Microsomas Hepáticos/metabolismo
8.
Arch Toxicol ; 96(8): 2145-2246, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35648190

RESUMEN

This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.


Asunto(s)
Productos Biológicos , Oxidorreductasas , Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Humanos , Molibdeno , Monoaminooxidasa/metabolismo , Oxidorreductasas/metabolismo
9.
J Med Chem ; 65(4): 2880-2904, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34347470

RESUMEN

Starting from the MLPCN probe compound ML300, a structure-based optimization campaign was initiated against the recent severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). X-ray structures of SARS-CoV-1 and SARS-CoV-2 3CLpro enzymes in complex with multiple ML300-based inhibitors, including the original probe ML300, were obtained and proved instrumental in guiding chemistry toward probe compound 41 (CCF0058981). The disclosed inhibitors utilize a noncovalent mode of action and complex in a noncanonical binding mode not observed by peptidic 3CLpro inhibitors. In vitro DMPK profiling highlights key areas where further optimization in the series is required to obtain useful in vivo probes. Antiviral activity was established using a SARS-CoV-2-infected Vero E6 cell viability assay and a plaque formation assay. Compound 41 demonstrates nanomolar activity in these respective assays, comparable in potency to remdesivir. These findings have implications for antiviral development to combat current and future SARS-like zoonotic coronavirus outbreaks.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , COVID-19/metabolismo , Chlorocebus aethiops , Proteasas 3C de Coronavirus/aislamiento & purificación , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Glutamina/química , Glutamina/farmacología , Humanos , Cetonas/química , Cetonas/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Peptidomiméticos/química , SARS-CoV-2/enzimología , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
Arch Dis Child ; 107(3): e15, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34728462

RESUMEN

The COVID-19 pandemic necessitated an urgent reconfiguration of our difficult asthma (DA) service. We rapidly switched to virtual clinics and rolled out home spirometry based on clinical need. From March to August 2020, 110 patients with DA (68% virtually) were seen in clinic, compared with March-August 2019 when 88 patients were seen face-to-face. There was DA clinic cancellation/non-attendance (16% vs 43%; p<0.0003). In patients with home spirometers, acute hospital admissions (6 vs 26; p<0.01) from March to August 2020 were significantly lower compared with the same period in 2019. There was no difference in the number of courses of oral corticosteroids or antibiotics prescribed (47 vs 53; p=0.81). From April to August 2020, 50 patients with DA performed 253 home spirometry measurements, of which 39 demonstrated >20% decrease in forced expiratory volume in 1 s, resulting in new action plans in 87% of these episodes. In our DA cohort, we demonstrate better attendance rates at virtual multidisciplinary team consultations and reduced hospital admission rates when augmented with home spirometry monitoring.


Asunto(s)
Asma/terapia , COVID-19/epidemiología , Pandemias , Grupo de Atención al Paciente/organización & administración , Consulta Remota/organización & administración , Adolescente , Corticoesteroides/uso terapéutico , Antibacterianos/uso terapéutico , Asma/tratamiento farmacológico , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Monitoreo Fisiológico/métodos , SARS-CoV-2 , Espirometría
11.
Methods Mol Biol ; 2342: 809-823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34272718

RESUMEN

Often it may be convenient and efficient to address multiple research questions with a single experiment. In many instances, however, the best approach is to design the experiment to address one question at a time. The design of enzyme mapping experiments is discussed in this chapter, focusing on considerations pertinent to the study of aldehyde oxidase (AO) vs. cytochrome P450 metabolism. Specifically, a case is presented in which reduced glutathione (GSH) was included in an experiment with human liver S9 fraction to trap reactive metabolites generated from cytochrome P450-mediated metabolism of lapatinib and its O-dealkylated metabolite, M1 (question 1). The AO inhibitor hydralazine was included in this experiment to investigate the involvement of AO-mediated metabolism of M1 (question 2). The presence of GSH was found to interfere with the inhibitory activity of hydralazine. Consideration of the time-dependent nature of hydralazine inhibitory activity toward AO when designing this experiment could have predicted the potential for GSH to interfere with hydralazine. This case underscores the importance of clearly identifying the research question, tailoring the experimental protocol to answer that question, and then meticulously considering how the experimental conditions could influence the results, particularly if attempting to address multiple questions with a single experiment.


Asunto(s)
Aldehído Oxidasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión/metabolismo , Hidralazina/farmacocinética , Lapatinib/farmacocinética , Activación Metabólica , Interacciones Farmacológicas , Hepatocitos/citología , Humanos , Microsomas Hepáticos/enzimología , Oxidación-Reducción , Proyectos de Investigación , Factores de Tiempo
12.
Arch Dis Child ; 105(10): 993-995, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31186291

RESUMEN

We retrospectively reviewed children who had been prescribed emergency oral corticosteroids (OCS) in a routine tertiary paediatric respiratory clinic appointment. We subsequently assessed adherence from prescription uptake of inhaled corticosteroids or combination inhalers in the 6 months prior to the episode. In 2 years, 25 children received 32 courses of prednisolone. Median adherence was 33%, but 28% for those with repeated OCS prescriptions. Prescribing acute OCS in a routine clinic is a red flag for potential poor adherence to preventer therapies, and may also indicate the child has poor perception of the severity of their symptoms. An assessment of adherence should be carried out and help given to the child and their family to improve poor adherence when detected.


Asunto(s)
Asma/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Cumplimiento de la Medicación/estadística & datos numéricos , Prednisolona/uso terapéutico , Administración Oral , Adolescente , Instituciones de Atención Ambulatoria , Niño , Prescripciones de Medicamentos , Femenino , Humanos , Masculino , Nebulizadores y Vaporizadores , Estudios Retrospectivos
13.
Drug Metab Dispos ; 47(11): 1257-1269, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31492693

RESUMEN

Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Lapatinib/farmacocinética , Activación Metabólica , Adulto , Anciano , Citocromo P-450 CYP3A/genética , Inhibidores del Citocromo P-450 CYP3A/farmacología , Femenino , Genotipo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad
14.
Xenobiotica ; 48(3): 219-231, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28281401

RESUMEN

1. Failure to predict human pharmacokinetics of aldehyde oxidase (AO) substrates using traditional allometry has been attributed to species differences in AO metabolism. 2. To identify appropriate species for predicting human in vivo clearance by single-species scaling (SSS) or multispecies allometry (MA), we scaled in vitro intrinsic clearance (CLint) of five AO substrates obtained from hepatic S9 of mouse, rat, guinea pig, monkey and minipig to human in vitro CLint. 3. When predicting human in vitro CLint, average absolute fold-error was ≤2.0 by SSS with monkey, minipig and guinea pig (rat/mouse >3.0) and was <3.0 by most MA species combinations (including rat/mouse combinations). 4. Interspecies variables, including fraction metabolized by AO (Fm,AO) and hepatic extraction ratios (E) were estimated in vitro. SSS prediction fold-errors correlated with the animal:human ratio of E (r2 = 0.6488), but not Fm,AO (r2 = 0.0051). 5. Using plasma clearance (CLp) from the literature, SSS with monkey was superior to rat or mouse at predicting human CLp of BIBX1382 and zoniporide, consistent with in vitro SSS assessments. 6. Evaluation of in vitro allometry, Fm,AO and E may prove useful to guide selection of suitable species for traditional allometry and prediction of human pharmacokinetics of AO substrates.


Asunto(s)
Aldehído Oxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Farmacocinética , Acetamidas/farmacocinética , Animales , Femenino , Guanidinas/farmacocinética , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacocinética , Cobayas , Humanos , Macaca fascicularis , Macaca mulatta , Masculino , Ratones , Pirazoles/farmacocinética , Piridazinas/farmacocinética , Pirimidinas/farmacocinética , Ratas Sprague-Dawley , Especificidad de la Especie , Porcinos , Porcinos Enanos , Triazoles/farmacocinética
15.
Drug Metab Dispos ; 45(12): 1245-1259, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28939686

RESUMEN

Aldehyde oxidase (AO) and xanthine oxidase (XO) are molybdo-flavoenzymes that catalyze oxidation of aromatic azaheterocycles. Differences in AO activity have been reported among various species, including rats, humans, and monkeys. Herein we report a species difference in the enzymes responsible for the metabolism of the negative allosteric modulator of metabotropic glutamate receptor subtype 5 (mGlu5 NAM) VU0424238 (VU238, auglurant). Hepatic S9 incubations with AO and XO specific inhibitors hydralazine and allopurinol indicated that rats and cynomolgus monkeys both oxidized VU238 to the 6-oxopyrimidine metabolite M1 via an AO-mediated pathway, whereas secondary oxidation to the 2,6-dioxopyrimidine metabolite M2 was mediated predominantly by AO in monkeys and XO in rats. Despite differences in enzymatic pathways, intrinsic clearance (CLint) of M1 was similar between species (cynomolgus and rat CLint = 2.00 ± 0.040 and 2.19 ± 0.201 µl/min per milligram of protein, respectively). Inhibitor studies in the S9 of multiple species indicated that oxidation of VU238 to M1 was mediated predominantly by AO in humans, cynomolgus and rhesus monkeys, rats, mice, guinea pigs, and minipigs. Oxidation of M1 to M2 was mediated predominantly by XO in rats and mice and by AO in monkeys and guinea pigs, whereas low turnover prevented enzyme phenotyping in humans and minipigs. Additionally, inhibitor experiments indicated that oxidation at the 2-position of the pyrimidine ring of the known AO substrate, BIBX1382, was mediated by AO in all species, although production of this metabolite was comparatively low in rats and mice. These data may suggest low reactivity of rat AO toward 2-oxidation of pyrimidine-containing compounds and highlight the importance of thoroughly characterizing AO-metabolized drug candidates in multiple preclinical species.


Asunto(s)
Aldehído Oxidasa/metabolismo , Aminopiridinas/metabolismo , Ácidos Picolínicos/metabolismo , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Xantina Oxidasa/metabolismo , Aldehído Oxidasa/antagonistas & inhibidores , Aminopiridinas/farmacocinética , Animales , Inhibidores Enzimáticos/farmacología , Cobayas , Hígado/enzimología , Macaca fascicularis , Macaca mulatta , Ratones , Oxidación-Reducción , Ácidos Picolínicos/farmacocinética , Ratas , Especificidad de la Especie , Fracciones Subcelulares/enzimología , Porcinos , Porcinos Enanos , Xantina Oxidasa/antagonistas & inhibidores
16.
Drug Metab Dispos ; 44(8): 1296-303, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26936972

RESUMEN

Marketed drugs cleared by aldehyde oxidase (AO) are few, with no known clinically relevant pharmacokinetic drug interactions associated with AO inhibition, whereas cytochrome P450 (P450) inhibition or induction mediates a number of clinical drug interactions. Little attention has been given to the consequences of coadministering a P450 inhibitor with a compound metabolized by both AO and P450. Upon discovering that VU0409106 (1) was metabolized by AO (to M1) and P450 enzymes (to M4-M6), we sought to evaluate the in vivo disposition of 1 and its metabolites in rats with attenuated P450 activity. Male rats were orally pretreated with the pan-P450 inactivator, 1-aminobenzotriazole (ABT), before an i.p. dose of 1. Interestingly, the plasma area under the curve (AUC) of M1 was increased 15-fold in ABT-treated rats, indicating a metabolic shunt toward AO resulted from the drug interaction condition. The AUC of 1 also increased 7.8-fold. Accordingly, plasma clearance of 1 decreased from 53.5 to 15.3 ml/min per kilogram in ABT-pretreated rats receiving an i.v. dose of 1. Consistent with these data, M1 formation in hepatic S9 increased with NADPH-exclusion to eliminate P450 activity (50% over reactions containing NADPH). These studies reflect possible consequences of a drug interaction between P450 inhibitors and compounds cleared by both AO and P450 enzymes. Notably, increased exposure to an AO metabolite may hold clinical relevance for active metabolites or those mediating toxicity at elevated concentrations. The recent rise in clinical drug candidates metabolized by AO underscores the importance of these findings and the need for clinical studies to fully understand these risks.


Asunto(s)
Aldehído Oxidasa/metabolismo , Benzamidas/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Tiazoles/farmacocinética , Triazoles/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Benzamidas/administración & dosificación , Benzamidas/metabolismo , Biotransformación , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Interacciones Farmacológicas , Humanos , Masculino , Tasa de Depuración Metabólica , Microsomas Hepáticos/enzimología , Ratas Sprague-Dawley , Medición de Riesgo , Especificidad por Sustrato , Tiazoles/administración & dosificación , Tiazoles/metabolismo , Triazoles/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA