Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 61(Pt 10): 2482-2490, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21097641

RESUMEN

An aerobic, saccharolytic, obligately thermophilic, motile, non-spore-forming bacterium, strain T49(T), was isolated from geothermally heated soil at Hell's Gate, Tikitere, New Zealand. On the basis of 16S rRNA gene sequence similarity, T49(T) is the first representative of a new class in the newly described phylum Armatimonadetes, formerly known as candidate division OP10. Cells of strain T49(T) stained Gram-negative and were catalase-positive and oxidase-negative. Cells possessed a highly corrugated outer membrane. The major fatty acids were 16 : 0, i17 : 0 and ai17 : 0. The G+C content of the genomic DNA was 54.6 mol%. Strain T49(T) grew at 50-73 °C with an optimum temperature of 68 °C, and at pH 4.7-5.8 with an optimum growth pH of 5.3. A growth rate of 0.012 h(-1) was observed under optimal temperature and pH conditions. The primary respiratory quinone was MK-8. Optimal growth was achieved in the absence of NaCl, although growth was observed at NaCl concentrations as high as 2 % (w/v). Strain T49(T) was able to utilize mono- and disaccharides such as cellobiose, lactose, mannose and glucose, as well as branched or amorphous polysaccharides such as starch, CM-cellulose, xylan and glycogen, but not highly linear polysaccharides such as crystalline cellulose or cotton. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain T49(T) represents a novel bacterial genus and species within the new class Chthonomonadetes classis nov. of the phylum Armatimonadetes. The type strain of Chthonomonas calidirosea gen. nov., sp. nov. is T49(T) ( = DSM 23976(T) = ICMP 18418(T)).


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Aerobiosis , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Composición de Base , Metabolismo de los Hidratos de Carbono , Catalasa/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Gossypium , Concentración de Iones de Hidrógeno , Locomoción , Datos de Secuencia Molecular , Nueva Zelanda , Oxidorreductasas/metabolismo , Filogenia , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , Temperatura
2.
Biol Direct ; 3: 26, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18593465

RESUMEN

BACKGROUND: The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. RESULTS: We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. CONCLUSION: The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. REVIEWERS: This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.


Asunto(s)
Chlamydiaceae/genética , Chlamydiaceae/aislamiento & purificación , Hibridación Genómica Comparativa , Genoma Bacteriano , Secuencia de Bases , Chlamydiaceae/crecimiento & desarrollo , Chlamydiaceae/metabolismo , Concentración de Iones de Hidrógeno , Metano/metabolismo
3.
Environ Microbiol ; 10(8): 2030-41, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18422642

RESUMEN

We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi, Proteobacteria and candidate division OP10. Aerobic, thermophilic, organotrophic bacteria were isolated using cultivation protocols that involved extended incubation times, low-pH media and gellan as a replacement gelling agent to agar. Isolates represented previously uncultured species, genera, classes, and even a new phylum of bacteria. They included members of the commonly cultivated phyla Proteobacteria, Firmicutes, Thermus/Deinococcus, Actinobacteria and Bacteroidetes, as well as more-difficult-to-cultivate groups. Isolates possessing < 85% 16S rRNA gene sequence identity to any cultivated species were obtained from the phyla Acidobacteria, Chloroflexi and the previously uncultured candidate division OP10. Several isolates were prevalent in 16S rRNA gene clone libraries constructed directly from the soils. A key factor facilitating isolation was the use of gellan-solidified plates, where the gellan itself served as an energy source for certain bacteria. The results indicate that geothermal soils are a rich potential source of novel bacteria, and that relatively simple cultivation techniques are practical for isolating bacteria from these habitats.


Asunto(s)
Bacterias , Chloroflexi/aislamiento & purificación , Microbiología del Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Nueva Zelanda , Filogenia , ARN Ribosómico 16S , Erupciones Volcánicas
4.
Nature ; 450(7171): 879-82, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-18004300

RESUMEN

Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane cycles are very acidic. Here we describe an extremely acidophilic methanotroph that grows optimally at pH 2.0-2.5. Unlike the known methanotrophs, it does not belong to the phylum Proteobacteria but rather to the Verrucomicrobia, a widespread and diverse bacterial phylum that primarily comprises uncultivated species with unknown genotypes. Analysis of its draft genome detected genes encoding particulate methane monooxygenase that were homologous to genes found in methanotrophic proteobacteria. However, known genetic modules for methanol and formaldehyde oxidation were incomplete or missing, suggesting that the bacterium uses some novel methylotrophic pathways. Phylogenetic analysis of its three pmoA genes (encoding a subunit of particulate methane monooxygenase) placed them into a distinct cluster from proteobacterial homologues. This indicates an ancient divergence of Verrucomicrobia and Proteobacteria methanotrophs rather than a recent horizontal gene transfer of methanotrophic ability. The findings show that methanotrophy in the Bacteria is more taxonomically, ecologically and genetically diverse than previously thought, and that previous studies have failed to assess the full diversity of methanotrophs in acidic environments.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Metano/metabolismo , Ácidos/metabolismo , Bacterias/enzimología , Bacterias/genética , Sedimentos Geológicos/microbiología , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/genética , Oxígeno/metabolismo , Oxigenasas/genética , Presión Parcial , Filogenia , ARN Ribosómico 16S/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...