Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 354: 120370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387353

RESUMEN

Habitat complexity is widely considered an important determinant of biodiversity, and enhancing complexity can play a key role in restoring degraded habitats. However, the effects of habitat complexity on ecosystem functioning - as opposed to biodiversity and community structure - are relatively poorly understood for artificial habitats, which dominate many coastlines. With Greening of Grey Infrastructure (GGI) approaches, or eco-engineering, increasingly being applied around the globe, it is important to understand the effects that modifying habitat complexity has on both biodiversity and ecological functioning in these highly modified habitats. We assessed how manipulating physical (primary substrate) and/or biogenic habitat (bivalves) complexity on intertidal artificial substrata affected filtration rates, net and gross primary productivity (NPP and GPP, respectively) and community respiration (CR) - as well as abundance of filter feeders and macro-algae and habitat use by cryptobenthic fish across six locations in three continents. We manipulated both physical and biogenic complexity using 1) flat or ridged (2.5 cm or 5 cm) settlement tiles that were either 2) unseeded or seeded with oysters or mussels. Across all locations, increasing physical and biogenic complexity (5 cm seeded tiles) had a significant effect on most ecological functioning variables, increasing overall filtration rates and community respiration of the assemblages on tiles but decreasing productivity (both GPP and NPP) across all locations. There were no overall effects of increasing either type of habitat complexity on cryptobenthic fish MaxN, total time in frame or macro-algal cover. Within each location, there were marked differences in the effects of habitat complexity. In Hobart, we found higher filtration, filter feeder biomass and community respiration on 5 cm tiles compared to flat tiles. However, at this location, both macro-algae cover and GPP decreased with increasing physical complexity. Similarly in Dublin, filtration, filter feeder biomass and community respiration were higher on 5 cm tiles compared to less complex tiles. In Sydney, filtration and filter feeder biomass were higher on seeded than unseeded tiles, and fish MaxN was higher on 5 cm tiles compared to flat tiles. On unseeded tiles in Sydney, filter feeder biomass also increased with increasing physical complexity. Our findings suggest that GGI solutions via increased habitat complexity are likely to have trade-offs among potentially desired functions, such as productivity and filtration rates, and variable effects on cryptobenthic fish communities. Importantly, our results show that the effects of GGI practices can vary markedly according to the environmental context and therefore should not be blindly and uniformly applied across the globe.


Asunto(s)
Ecosistema , Ostreidae , Animales , Biodiversidad , Biomasa , Peces
2.
Mar Environ Res ; 193: 106308, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104418

RESUMEN

Artificial structures have become widespread features of coastal marine environments, and will likely proliferate further over the coming decades. These constitute new hard substrata in the marine environment which provide a fundamentally different habitat than natural shores. Eco-engineering solutions aim to ameliorate these differences by combining ecological knowledge and engineering criteria in the construction and modification of artificial substrata. Vertipools™ are artificial bolt-on rockpools intended for deployment on seawalls, where they have been shown to provide biodiversity benefits. In this study, a total of 32 Vertipools were retrofitted on eight seawalls in different environmental contexts (estuarine vs marine and urban vs rural) along the Irish Sea coastline, and were exposed to the environment for a period of two years. After two years, there were no differences in species richness, species-abundance distributions, diversity, or community composition between the specific environmental contexts examined here. Site-level variation was significant, and communities on Vertipools deployed in marine contexts were more variable in general than those in estuarine contexts. Community composition differed significantly between structural sections of the Vertipools, indicating that different sections provide specific microhabitats for colonisation. This study indicates that Vertipools provide biodiversity benefits in a variety of environmental contexts, and therefore are broadly viable as an eco-engineering solution.


Asunto(s)
Biodiversidad , Ecosistema
3.
Mar Environ Res ; 189: 106043, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37331072

RESUMEN

Coastal ecosystems are ecologically and economically important but are under increasing pressure from numerous anthropogenic sources of stress. Both heavy metal pollution and invasive species pose major environmental concerns that can have significant impacts on marine organisms. It is likely that many stresses will occur simultaneously, resulting in potential cumulative ecological effects. The aim of this study was to compare the relative resilience of an invasive oyster Magallana gigas and a native mussel Mytilus edulis to heavy metal pollution, utilising their valve gape response as an indicator. The gape activity of bivalves has been utilised to monitor a range of potential impacts, including for example oil spills, increased turbidity, eutrophication, heavy metal contamination etc. In this study, Hall effect sensors were used on both the native blue mussel (M. edulis) and the pacific oyster (M. gigas), invasive to Ireland. Mussels were shown to be more responsive to pollution events than oysters, where all heavy metals tested (copper, cadmium, zinc, lead) had an effect on transition frequency though significant differences were only observed for lead and cadmium (Control; > Copper, p = 0.0003; >lead, p = 0.0002; >Cadmium, p = 0.0001). Cadmium had an apparent effect on mussels with specimens from this treatment remaining closed for an average of 45.3% of the time. Similarly, significant effects on the duration of time mussels spent fully open was observed when treated with lead and cadmium (Control; > lead, p = 0.03, > cadmium, p = 0.02). In contrast, oysters displayed no significant difference for any treatment for number of gapes, or duration spent open or closed. Though there was an effect of both zinc and copper on the amount of time spent closed, with averages of 63.2 and 68.7% respectively. This indicates oysters may be potentially more resilient to such pollution events; further boosting their competitive advantage. Future mesocosm or field studies are required to quantify this relative resilience.


Asunto(s)
Metales Pesados , Mytilus edulis , Ostreidae , Contaminantes Químicos del Agua , Animales , Cadmio/farmacología , Mytilus edulis/fisiología , Cobre , Ecosistema , Metales Pesados/toxicidad , Metales Pesados/análisis , Zinc , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Mar Environ Res ; 189: 106059, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37321022

RESUMEN

Artificial structures are an increasingly common feature of coastal marine environments. These structures are poor surrogates of natural rocky shores, and generally support less diverse communities and reduced population sizes. Little is known about sub-lethal effects of such structures in terms of demographic properties and reproductive potential, both of which may influence the dynamics and long-term viability of populations. This study examines the population structure, reproductive states and embryo production of Nucella lapillus populations on artificial structures and natural shores in Ireland and Wales. Population density was measured twice at six natural shores and six artificial structures: once in winter and once in spring. At each sampling, the shell height of 100 individuals from each site was measured. Monthly collections of adult specimens and egg capsules were made at each site from November-January and from March-May, in order to determine sex ratios, reproductive states, and embryo abundances. Artificial structures supported larger individuals and very few juveniles compared to natural shores. Between December and January, natural shores experienced a distinctive pulse in spawning activity followed by a decline in the proportion of females in a reproductive state, whereas on artificial structures the proportion of reproductive females remained relatively stable. Differences observed may be due to a lack of microhabitats on artificial structures, along with subtle variations in structure slope. Eco-engineering interventions, including the addition of refugia such as cracks and crevices, may allow N. lapillus populations on artificial structures to approximate those on natural shores.


Asunto(s)
Gastrópodos , Humanos , Animales , Femenino , Ambiente , Dinámica Poblacional , Reproducción , Densidad de Población
5.
Mar Environ Res ; 188: 106022, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187086

RESUMEN

Artificial structures are widespread features of coastal environments, but are poor surrogates of natural rocky shores because they generally support depauperate assemblages with reduced population sizes. This has generated significant interest in eco-engineering solutions, including retrofitting seawalls with artificial rockpools to increase water retention and provide microhabitats. Although these have proven effective at individual sites, widespread uptake is contingent on evidence of consistent benefits across a range of contexts. In this study, Vertipools™ were retrofitted on eight seawalls in different environmental contexts (urban v rural and estuarine v marine) along the Irish Sea coastline and were monitored regularly for two years. Seaweed colonisation proceeded in a manner similar to patterns described for natural and artificial intertidal systems in general, consisting of early dominance by ephemeral species followed by the appearance and eventual establishment of perennial habitat-formers. After 24 months, species richness did not differ between contexts, but differed between sites. The units supported populations of large habitat-forming seaweeds at all sites. Productivity and community respiration of the colonising communities differed between sites by up to 0.5 mg O2 L-1 min-1, but not across environmental contexts. This study demonstrates that bolt-on rockpools attract similar levels of biotic colonisation and functioning in a variety of temperate environmental contexts, and could be considered for widespread implementation as an eco-engineering solution.


Asunto(s)
Algas Marinas , Ecosistema , Ambiente , Densidad de Población , Biodiversidad
6.
Mar Environ Res ; 187: 105956, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958198

RESUMEN

Artificial structures are poor surrogates of natural rocky shores, meaning they generally support depauperate assemblages. These differences may result from a combination of recruitment processes, biotic interactions, and structuring by environmental factors. In this study, plots were cleared on two seawalls and two natural shores at two separate timepoints - in August 2020 (summer) and February 2021 (winter) - and monitored over one year to determine the influence of timing of disturbance on recruitment and succession. Additional plots were cleared at one of the seawalls at a single timepoint in August 2020, and exclusion cages were installed to determine the influence of grazing pressure on colonisation; these were monitored for 18 months. Disturbance during winter resulted in higher concentrations of all biofilm components up to 3 months, but did not impact benthic community composition beyond this point. Grazer exclusion on artificial structures increased biofilm concentrations and influenced community composition in comparison to plots on artificial structures without exclusion, while communities on natural surfaces differed in terms of species composition to those on artificial plots at 12 months. We conclude that the timing of routine maintenance works on artificial structures may impact initial biofilm abundances. Furthermore, while grazing pressure does influence community structure on artificial structures, this alone is not sufficient to explain biological differences between artificial structures and natural shores.

7.
Mar Environ Res ; 184: 105853, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584493

RESUMEN

Artificial structures often support depauperate communities compared to natural rocky shores. Understanding variation in ecological success across shore types, particularly regarding habitat-forming species or those with structuring roles, is important to determine how artificial structure proliferation may influence ecosystem functioning and services. We investigated the population structure, sex ratio and reproductive potential of limpets on natural shores and artificial structures on Irish Sea coasts. Limpets were generally less abundant and Patella vulgata populations were often male dominated on artificial structures compared to natural shores, suggesting that shore type may influence these factors. P. vulgata length varied across sites within the Irish Sea (nested in coast and shore type) in autumn/winter, as well as temporally across sites along the Welsh coast. There was no difference in the proportion of P. vulgata in advanced stages of gonad development across shore types. The results suggest that rip-rap artificial structures may provide a habitat comparable to natural shores, however, the addition of ecological engineering interventions on artificial structures may allow limpet populations to better approximate those on natural shores.


Asunto(s)
Ecosistema , Gastrópodos , Animales , Masculino , Estaciones del Año , Razón de Masculinidad
8.
Water Res ; 226: 119260, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279611

RESUMEN

Multiple stressors are continuously deteriorating surface waters worldwide, posing many challenges for their conservation and restoration. Combined effect types of multiple stressors range from single-stressor dominance to complex interactions. Identifying prevalent combined effect types is critical for environmental management, as it helps to prioritise key stressors for mitigation. However, it remains unclear whether observed single and combined stressor effects reflect true ecological processes unbiased by sample size and length of stressor gradients. Therefore, we examined the role of sample size and stressor gradient lengths in 158 paired-stressor response cases with over 120,000 samples from rivers, lakes, transitional and marine ecosystems around the world. For each case, we split the overall stressor gradient into two partial gradients (lower and upper) and investigated associated changes in single and combined stressor effects. Sample size influenced the identified combined effect types, and stressor interactions were less likely for cases with fewer samples. After splitting gradients, 40 % of cases showed a change in combined effect type, 30 % no change, and 31 % showed a loss in stressor effects. These findings suggest that identified combined effect types may often be statistical artefacts rather than representing ecological processes. In 58 % of cases, we observed changes in stressor effect directions after the gradient split, suggesting unimodal stressor effects. In general, such non-linear responses were more pronounced for organisms at higher trophic levels. We conclude that observed multiple stressor effects are not solely determined by ecological processes, but also strongly depend on sampling design. Observed effects are likely to change when sample size and/or gradient length are modified. Our study highlights the need for improved monitoring programmes with sufficient sample size and stressor gradient coverage. Our findings emphasize the importance of adaptive management, as stress reduction measures or further ecosystem degradation may change multiple stressor-effect relationships, which will then require associated changes in management strategies.


Asunto(s)
Ecosistema , Lagos , Océanos y Mares , Ríos , Tamaño de la Muestra
9.
Proc Biol Sci ; 288(1951): 20210329, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34004129

RESUMEN

From microbes to humans, habitat structural complexity plays a direct role in the provision of physical living space, and increased complexity supports higher biodiversity and ecosystem functioning across biomes. Coastal development and the construction of artificial shorelines are altering natural landscapes as humans seek socio-economic benefits and protection from coastal storms, flooding and erosion. In this study, we evaluate how much structural complexity is missing on artificial coastal structures compared to natural rocky shorelines, across a range of spatial scales from 1 mm to 10 s of m, using three remote sensing platforms (handheld camera, terrestrial laser scanner and uncrewed aerial vehicles). Natural shorelines were typically more structurally complex than artificial ones and offered greater variation between locations. However, our results varied depending on the type of artificial structure and the scale at which complexity was measured. Seawalls were deficient at all scales (approx. 20-40% less complex than natural shores), whereas rock armour was deficient at the smallest and largest scales (approx. 20-50%). Our findings reinforce concerns that hardening shorelines with artificial structures simplifies coastlines at organism-relevant scales. Furthermore, we offer much-needed insight into how structures might be modified to more closely capture the complexity of natural rocky shores that support biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Humanos
10.
Mar Environ Res ; 168: 105324, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33845257

RESUMEN

Artificial structures are widespread features of coastal marine environments. These structures, however, are poor surrogates of natural rocky shores, meaning they generally support depauperate assemblages with reduced population sizes. Little is known about sub-lethal effects of such structures, for example, in terms of demographic properties and reproductive potential that may affect the dynamics and long-term viability of populations. Such understanding is particularly important for ecosystem engineer species, such as the intertidal seaweed Fucus vesiculosus. In this study, F. vesiculosus was sampled on eight artificial structures and eight natural shores along the east coast of Ireland and the west coast of Wales. Algal percentage cover, biomass, density of individuals, and growth rate did not differ between artificial and natural shores. Growth and reproductive cycles were consistent with previous studies for this species. While there was considerable variation from site to site, on average, populations on natural shores produced a higher number of mature receptacles during the peak reproductive period in April, and lower rates of dislodgement than on artificial structures. As F. vesiculosus reach peak reproductive output after 24 months, this suggests that individuals may be removed from populations on artificial structures before reaching their full reproductive potential. In this case, this did not influence density, percentage cover, or biomass, which suggests that F. vesiculosus populations on artificial structures may function similarly to those on natural shores if supported by suitable source populations, but potentially may not persist otherwise.


Asunto(s)
Fucus , Ecosistema , Fertilidad , Humanos , Irlanda , Gales
11.
Biol Rev Camb Philos Soc ; 95(6): 1554-1573, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32614143

RESUMEN

Contaminants may affect ecosystem functioning by reducing the fitness of organisms and these impacts may cascade through ecosystems, particularly if the sensitive organisms are also habitat-forming species. Understanding how sub-lethal effects of toxicants can affect the quality and functions of biogenic habitats is critical if we are to establish effective guidelines for protecting ecosystems. We carried out a global systematic review and meta-analysis critically evaluating contaminant effects on properties of habitat-formers linked to ecosystem functioning. We reviewed a total of 95 publications. However, 40% of publications initially captured by the literature search were identified as having flaws in experimental design and ~11% did not present results in an appropriate way and thus were excluded from the quantitative meta-analysis. We quantitatively reviewed 410 studies from 46 publications, of which 313 (~76%) were on plants and seaweeds, that is macro-algae, saltmarsh plants and seagrasses, 58 (~14%) studied corals and 39 (~10%) looked at toxicant impacts on bivalves, with 70% of those on mussels and the remaining studies on oysters. Response variables analysed were photosynthetic efficiency, amount of chlorophyll a (as a proxy for primary production) and growth of plants, seaweeds and corals as well as leaf area of plants. We also analysed filtration, growth and respiration rates of bivalves. Our meta-analysis found that chemical contaminants have a significant negative impact on most of the analysed functional variables, with the exception of the amount of chlorophyll a. Metals were the most widely harmful type of contaminant, significantly decreasing photosynthetic efficiency of kelps, leaf area of saltmarsh plants, growth of fucoids, corals and saltmarsh plants and the filtration rates of bivalves. Organic contaminants decreased the photosynthetic efficiency of seagrass, but had no significant effects on bivalve filtration. We did not find significant effects of polycyclic aromatic hydrocarbons on any of the analysed functional variables or habitat-forming taxa, but this could be due to the low number of studies available. A meta-regression revealed that relationships between concentrations of metal contaminants and the magnitude of functional responses varied with the type of metal and habitat-former. Increasing concentrations of contaminants significantly increased the negative effects on the photosynthetic efficiency of habitat-formers. There was, however, no apparent relationship between ecologically relevant concentrations of metals and effect sizes of photosynthetic efficiency of corals and seaweeds. A qualitative analysis of all relevant studies found slightly different patterns when compared to our quantitative analysis, emphasising the need for studies to meet critical inclusion criteria for meta-analyses. Our study highlights links between effects of contaminants at lower levels of organisation (i.e. at the biochemical and/or physiological level of individuals) and ecological, large-scale impacts, through effects on habitat-forming species. Contaminants can clearly reduce the functioning of many habitat-forming marine species. We therefore recommend the adoption of routine measures of functional endpoints in monitoring and conservation programs to complement structural measures.


Asunto(s)
Antozoos , Ecosistema , Animales , Clorofila A , Ambiente , Humanos , Plantas
12.
PLoS Biol ; 16(9): e2006852, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180154

RESUMEN

Habitat-forming species sustain biodiversity and ecosystem functioning in harsh environments through the amelioration of physical stress. Nonetheless, their role in shaping patterns of species distribution under future climate scenarios is generally overlooked. Focusing on coastal systems, we assess how habitat-forming species can influence the ability of stress-sensitive species to exhibit plastic responses, adapt to novel environmental conditions, or track suitable climates. Here, we argue that habitat-former populations could be managed as a nature-based solution against climate-driven loss of biodiversity. Drawing from different ecological and biological disciplines, we identify a series of actions to sustain the resilience of marine habitat-forming species to climate change, as well as their effectiveness and reliability in rescuing stress-sensitive species from increasingly adverse environmental conditions.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Adaptación Fisiológica , Refugio de Fauna , Especificidad de la Especie
13.
Glob Chang Biol ; 24(3): 906-924, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29211336

RESUMEN

Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Especies Introducidas , Océanos y Mares , Animales , Humanos
14.
Mar Pollut Bull ; 107(1): 136-143, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27090885

RESUMEN

Increased levels of anthropogenic stressors in the marine environment are leading to complex changes in its diversity and functioning. Many marine ecosystems are exposed simultaneously to multiple stressors, and their combined effects are difficult to predict. Climate change will intensify the input of terrestrial pollutants and increase the flow of water to coastal systems through increased precipitation. Subtidal assemblages were subjected to factorial combinations of copper and freshwater to test effects on their structure and on ecosystem processes. Assemblages were also subjected to seawater to separate the intended effects of water flow and salinity. For the first three months, no effects of copper or freshwater were found. After three months, copper significantly reduced the taxon richness and the percentage cover of taxa, and reduced the rate of community respiration and gross primary production. The flow of water also reduced community respiration, regardless of whether the water was fresh or saline.


Asunto(s)
Incrustaciones Biológicas , Cobre , Agua Dulce , Biodiversidad , Ecosistema , Agua de Mar
15.
Ecol Evol ; 6(2): 514-31, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26843935

RESUMEN

Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L 50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L 50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0-15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.

17.
Mar Environ Res ; 105: 20-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25637878

RESUMEN

Stormwater brings freshwater and terrestrially derived contaminants into coastal systems and is predicted to increase with climate change. This study aimed to characterise variation in rocky shore assemblages in relation to stormwater pollution. Intertidal assemblages were sampled in similar habitats at a range of distances (0 m, 10 m, 20 m, 60 m, and 100 m) from stormwater outfalls on three rocky shores north of Dublin. In general, taxon richness and algal cover increased after 20 m from a stormwater outfall. Limpet population structure and condition index showed no consistent patterns among shores. Assemblage structure at or near stormwater sites differed from that at sites 100 m away. These findings, ideally supplemented by experimental research, may be used to inform stormwater management and remediation approaches.


Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente , Lluvia , Animales , Chlorophyta/fisiología , Gastrópodos/fisiología , Invertebrados/fisiología , Irlanda , Densidad de Población , Movimientos del Agua
18.
Mar Pollut Bull ; 91(1): 211-21, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25563931

RESUMEN

Limited knowledge of the mechanisms through which multiple stressors affect communities and ecosystems limits capacity to predict their effects. Less clear is how stressors impact early colonization of newly available habitats due to scarcity of studies. The present study tested whether copper and freshwater input affect colonization of hard substrata independently or interactively and assessed differences in community respiration and total biomass among early stage assemblages which developed under different regimes of copper and freshwater input. While copper influenced effectively the colonization of individual species, freshwater effect was weak or null. Apart from a significant effect on total community composition, the interactive effect between stressors was weak and mainly driven by antagonistic interactions between copper and water flow. Total biomass and respiration of the community studied were not affected by stressors. These findings contradict the expectation that changes in community structure are likely to cause changes in functioning.


Asunto(s)
Biota/efectos de los fármacos , Cobre/efectos adversos , Ecosistema , Agua Dulce , Invertebrados/efectos de los fármacos , Invertebrados/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Animales , Biomasa , Biota/fisiología , Irlanda , Consumo de Oxígeno/efectos de los fármacos , Especificidad de la Especie
19.
Mar Pollut Bull ; 87(1-2): 220-229, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25127499

RESUMEN

Sustainable exploitation of coastal ecosystems is facilitated by tools which allow reliable assessment of their response to anthropogenic pressures. The Infaunal Quality Index (IQI) and Multivariate-AMBI (M-AMBI) were developed to classify the ecological status (ES) of benthos for the Water Framework Directive (WFD). The indices respond reliably to the impacts of organic enrichment in muddy sand habitats, but their applicability across a range of pressures and habitats is less well understood. The ability of the indices to predict changes in response to pressures in three distinct habitats, intertidal muddy sand, maerl and inshore gravel, was tested using pre-existing datasets. Both responded following the same patterns of variation as previously reported. The IQI was more conservative when responding to environmental conditions so may have greater predictive value in dynamic habitats to provide an early-warning system to managers'. Re-calibration of reference conditions is necessary to reliably reflect ES in different habitats.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Animales , Actividades Humanas , Humanos
20.
Glob Chang Biol ; 20(9): 2712-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24890042

RESUMEN

Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.


Asunto(s)
Biodiversidad , Biota/fisiología , Ecosistema , Eutrofización/fisiología , Floraciones de Algas Nocivas/fisiología , Invertebrados/fisiología , Procesos Fototróficos/fisiología , Animales , Biología Marina , Océanos y Mares , Dinámica Poblacional , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...