Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 42(10): 739-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22820710

RESUMEN

Isopentenyl diphosphate isomerase (IPPI) of the spruce budworm, Choristoneura fumiferana, and of the tobacco hornworm, Manduca sexta, was cloned and its catalytic properties assessed. In the presence of Mg(2+) or Mn(2+), the recombinant protein from C. fumiferana (CfIPPI) efficiently isomerized IPP to dimethylallyl diphosphate (DMAPP). While C. fumiferana IPPI transcript levels were evenly distributed in a wide variety of tissues, they were highly abundant in the corpora allata. Because IPPI plays an alternate role in lepidopteran juvenile hormone (JH) biosynthesis by catalyzing the isomerization of the homologous substrate, homoisopentenyl diphosphate (HIPP), the ability of CfIPPI to convert HIPP to homodimethylallyl diphosphate (HDMAPP) was also studied. As expected, HIPP isomerization was efficient and the formation of HDMAPP occurred, but the regiospecificity of the reaction was lower than previously found in M. sexta corpora allata homogenates and with purified Bombyx mori IPPI. Differences in inhibitory potency for several alkylated ammonium diphosphates and higher homologs of DMAPP were noted between CfIPPI and a vertebrate IPPI, suggesting that the lepidopteran enzyme has a larger active site cavity. To determine the structural factors responsible for homologous substrate coupling, site directed mutagenesis of several residues identified through sequence alignment and homology modeling analysis was performed. The results suggest that unlike other IPPIs, W216 (C. fumiferana numbering) works in concert with a tyrosine residue (Y105) to allow binding of larger substrates and to stabilize the high-energy intermediate formed during substrate isomerization.


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono/química , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Clonación Molecular , Proteínas de Insectos/genética , Manduca/enzimología , Mariposas Nocturnas/enzimología , Secuencia de Aminoácidos , Animales , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Hemiterpenos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Cinética , Datos de Secuencia Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/genética , Alineación de Secuencia
2.
Plant Signal Behav ; 6(8): 1189-91, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21758018

RESUMEN

The Arabidopsis FOLK (At5g58560) gene encodes farnesol kinase, which phosphorylates farnesol to farnesyl phosphate. Loss-of-function mutations in the FOLK gene are associated with enhanced sensitivity to abscisic acid (ABA), suggesting that FOLK negatively regulates ABA signaling. Moreover, folk flowers develop supernumerary carpels under water stress, providing evidence for a molecular link between farnesol metabolism, abiotic stress signaling and flower development. Here, we show that farnesol increases ABA sensitivity and that ABA affects flower development in Arabidopsis.


Asunto(s)
Ácido Abscísico/fisiología , Arabidopsis/crecimiento & desarrollo , Farnesol/metabolismo , Flores/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
Plant J ; 66(6): 1078-88, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21395888

RESUMEN

Farnesol, which is toxic to plant cells at high concentrations, is sequentially phosphorylated to farnesyl phosphate and farnesyl diphosphate. However, the genes responsible for the sequential phosphorylation of farnesol have not been identified and the physiological role of farnesol phosphorylation has not been fully elucidated. To address these questions, we confirmed the presence of farnesol kinase activity in Arabidopsis (Arabidopsis thaliana) membranes and identified the corresponding gene (At5g58560, FOLK). Heterologous expression in recombinant yeast cells established farnesol as the preferred substrate of the FOLK-encoded kinase. Moreover, loss-of-function mutations in the FOLK gene abolished farnesol kinase activity, caused an abscisic acid-hypersensitive phenotype and promoted the development of supernumerary carpels under water-stress conditions. In wild-type plants, exogenous abscisic acid repressed FOLK gene expression. These observations demonstrate a role for farnesol kinase in negative regulation of abscisic acid signaling, and provide molecular evidence for a link between farnesol metabolism, abiotic stress signaling and flower development.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Farnesol/metabolismo , Flores/crecimiento & desarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Proteínas Recombinantes/metabolismo , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Especificidad por Sustrato
4.
Plant Physiol ; 154(3): 1116-27, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807998

RESUMEN

In Arabidopsis (Arabidopsis thaliana), farnesylcysteine is oxidized to farnesal and cysteine by a membrane-associated thioether oxidase called farnesylcysteine lyase. Farnesol and farnesyl phosphate kinases have also been reported in plant membranes. Together, these observations suggest the existence of enzymes that catalyze the interconversion of farnesal and farnesol. In this report, Arabidopsis membranes are shown to possess farnesol dehydrogenase activity. In addition, a gene on chromosome 4 of the Arabidopsis genome (At4g33360), called FLDH, is shown to encode an NAD(+)-dependent dehydrogenase that oxidizes farnesol more efficiently than other prenyl alcohol substrates. FLDH expression is repressed by abscisic acid (ABA) but is increased in mutants with T-DNA insertions in the FLDH 5' flanking region. These T-DNA insertion mutants, called fldh-1 and fldh-2, are associated with an ABA-insensitive phenotype, suggesting that FLDH is a negative regulator of ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Oxidorreductasas de Alcohol/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Farnesol/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Mutación , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+) , ARN de Planta/genética , Transducción de Señal
5.
BMC Plant Biol ; 10: 118, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20565889

RESUMEN

BACKGROUND: Protein prenylation is a common post-translational modification in metazoans, protozoans, fungi, and plants. This modification, which mediates protein-membrane and protein-protein interactions, is characterized by the covalent attachment of a fifteen-carbon farnesyl or twenty-carbon geranylgeranyl group to the cysteine residue of a carboxyl terminal CaaX motif. In Arabidopsis, era1 mutants lacking protein farnesyltransferase exhibit enlarged meristems, supernumerary floral organs, an enhanced response to abscisic acid (ABA), and drought tolerance. In contrast, ggb mutants lacking protein geranylgeranyltransferase type 1 exhibit subtle changes in ABA and auxin responsiveness, but develop normally. RESULTS: We have expressed recombinant Arabidopsis protein farnesyltransferase (PFT) and protein geranylgeranyltransferase type 1 (PGGT1) in E. coli and characterized purified enzymes with respect to kinetic constants and substrate specificities. Our results indicate that, whereas PFT exhibits little specificity for the terminal amino acid of the CaaX motif, PGGT1 exclusively prenylates CaaX proteins with a leucine in the terminal position. Moreover, we found that different substrates exhibit similar K(m) but different k(cat) values in the presence of PFT and PGGT1, indicating that substrate specificities are determined primarily by reactivity rather than binding affinity. CONCLUSIONS: The data presented here potentially explain the relatively strong phenotype of era1 mutants and weak phenotype of ggb mutants. Specifically, the substrate specificities of PFT and PGGT1 suggest that PFT can compensate for loss of PGGT1 in ggb mutants more effectively than PGGT1 can compensate for loss of PFT in era1 mutants. Moreover, our results indicate that PFT and PGGT1 substrate specificities are primarily due to differences in catalysis, rather than differences in substrate binding.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Transferasas Alquil y Aril/genética , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutagénesis Sitio-Dirigida , Fenotipo , Prenilación de Proteína , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
6.
Mol Plant ; 3(1): 143-55, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19969520

RESUMEN

The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC lyase activity exhibit an enhanced response to ABA. However, the enzymological properties of the FCLY-encoded enzyme and its precise role in ABA signaling remain unclear. Here, we show that recombinant Arabidopsis FC lyase expressed in insect cells exhibits high selectivity for FC as a substrate and requires FAD and molecular oxygen for activity. Arabidopsis FC lyase is also shown to undergo post-translational N-glycosylation. FC, which is a competitive inhibitor of isoprenylcysteine methyltransferase (ICMT), accumulates in fcly mutants. Moreover, the enhanced response of fcly mutants to ABA is reversed by ICMT overexpression. These observations support the hypothesis that the ABA hypersensitive phenotype of fcly plants is the result of FC accumulation and inhibition of ICMT.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Liasas de Carbono-Azufre/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Cisteína/análogos & derivados , Cisteína/metabolismo , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Trends Plant Sci ; 14(3): 163-70, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19201644

RESUMEN

Protein isoprenylation refers to the covalent attachment of a 15-carbon farnesyl or 20-carbon geranylgeranyl moiety to a cysteine residue at or near the carboxyl terminus. This post-translational lipid modification, which mediates protein-membrane and protein-protein interactions, is necessary for normal control of abscisic acid and auxin signaling, meristem development, and other fundamental processes. Recent studies have also revealed roles for protein isoprenylation in cytokinin biosynthesis and innate immunity. Most isoprenylated proteins are further modified by carboxyl terminal proteolysis and methylation and, collectively, these modifications are necessary for the targeting and function of isoprenylated proteins.


Asunto(s)
Prenilación de Proteína , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional
9.
Plant Cell ; 21(1): 285-300, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19136647

RESUMEN

Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.


Asunto(s)
Eritritol/análogos & derivados , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Prenilación de Proteína , Fosfatos de Azúcar/metabolismo , Células Cultivadas , Clonación Molecular , Eritritol/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fosfatos de Poliisoprenilo/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/citología , Nicotiana/genética
10.
Plant Cell ; 20(10): 2714-28, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18957507

RESUMEN

Isoprenylated proteins bear an isoprenylcysteine methyl ester at the C terminus. Although isoprenylated proteins have been implicated in meristem development and negative regulation of abscisic acid (ABA) signaling, the functional role of the terminal methyl group has not been described. Here, we show that transgenic Arabidopsis thaliana plants overproducing isoprenylcysteine methyltransferase (ICMT) exhibit ABA insensitivity in stomatal closure and seed germination assays, establishing ICMT as a negative regulator of ABA signaling. By contrast, transgenic plants overproducing isoprenylcysteine methylesterase (ICME) exhibit ABA hypersensitivity in stomatal closure and seed germination assays. Thus, ICME is a positive regulator of ABA signaling. To test the hypothesis that ABA signaling is under feedback regulation at the level of isoprenylcysteine methylation, we examined the effect of ABA on ICMT and ICME gene expression. Interestingly, ABA induces ICME gene expression, establishing a positive feedback loop whereby ABA promotes ABA responsiveness of plant cells via induction of ICME expression, which presumably results in the demethylation and inactivation of isoprenylated negative regulators of ABA signaling. These results suggest strategies for metabolic engineering of crop species for drought tolerance by targeted alterations in isoprenylcysteine methylation.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transducción de Señal/fisiología , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Cisteína/química , Cisteína/metabolismo , Esterasas/genética , Esterasas/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metilación , Modelos Biológicos , Plantas Modificadas Genéticamente/metabolismo , Prenilación , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo
11.
Plant J ; 50(5): 839-47, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17425716

RESUMEN

In plants, prenylated proteins are involved in actin organization, calcium-mediated signal transduction, and many other biological processes. Arabidopsis thaliana mutants lacking functional protein prenyltransferase genes have also revealed roles for prenylated proteins in phytohormone signaling and meristem development. However, to date, the turnover of prenylated plant proteins and the fate of the prenylcysteine (PC) residue have not been described. We have detected an enzyme activity in Arabidopsis plants that metabolizes farnesylcysteine (FC) to farnesal, which is subsequently reduced to farnesol. Unlike its mammalian ortholog, Arabidopsis FC lyase exhibits specificity for FC over geranylgeranylcysteine (GGC), and recognizes N-acetyl-FC (AFC). FC lyase is encoded by a gene on chromosome 5 of the Arabidopsis genome (FCLY, At5g63910) and is ubiquitously expressed in Arabidopsis tissues and organs. Furthermore, T-DNA insertions into the FCLY gene cause significant decreases in FC lyase activity and an enhanced response to abscisic acid (ABA) in seed germination assays. The effects of FCLY mutations on ABA sensitivity are even greater in the presence of exogenous FC. These data suggest that plants possess a specific FC detoxification and recycling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Liasas de Carbono-Azufre/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Farnesol/metabolismo , Proteína Metiltransferasas/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , ADN de Plantas/genética , Inactivación Metabólica , Cinética , Datos de Secuencia Molecular , Proteína Metiltransferasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
Gene ; 380(2): 159-66, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16870359

RESUMEN

Prenylated proteins undergo a series of post-translational modifications, including prenylation, proteolysis, and methylation. Collectively, these modifications generate a prenylcysteine methylester at the carboxyl terminus and modulate protein targeting and function. Prenylcysteine methylation is the only reversible step in this series of modifications. However, prenylcysteine alpha-carboxyl methylesterase (PCME) activity has not been described in plants. We have detected a specific PCME activity in Arabidopsis thaliana membranes that discriminates between biologically relevant and irrelevant prenylcysteine methylester substrates. Furthermore, we have identified an Arabidopsis gene (At5g15860) that encodes measurable PCME activity in recombinant yeast cells with greater specificity for biologically relevant prenylcysteine methylesters than the activity found in Arabidopsis membranes. These results suggest that specific and non-specific esterases catalyze the demethylation of prenylcysteine methylesters in Arabidopsis membranes. Our findings are discussed in the context of prenylcysteine methylation/demethylation as a potential regulatory mechanism for membrane association and function of prenylated proteins in Arabidopsis.


Asunto(s)
Arabidopsis/enzimología , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Esterasas/fisiología , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Membrana Celular/enzimología , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Metanol/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteína Metiltransferasas/metabolismo , Prenilación de Proteína/fisiología , Homología de Secuencia de Aminoácido
13.
J Biol Chem ; 281(37): 27145-57, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16831869

RESUMEN

Ubiquitin (Ub)-fold proteins are rapidly emerging as an important class of eukaryotic modifiers, which often exert their influence by post-translational addition to other intracellular proteins. Despite assuming a common beta-grasp three-dimensional structure, their functions are highly diverse because of distinct surface features and targets and include tagging proteins for selective breakdown, nuclear import, autophagic recycling, vesicular trafficking, polarized morphogenesis, and the stress response. Here we describe a novel family of Membrane-anchored Ub-fold (MUB) proteins that are present in animals, filamentous fungi, and plants. Extending from the C terminus of the Ub-fold is typically a cysteine-containing CAAX (where A indicates aliphatic amino acid) sequence that can direct the attachment of either a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety in vitro. Modified forms of several MUBs were detected in transgenic Arabidopsis thaliana, suggesting that these MUBs are prenylated in vivo. Both cell fractionation and confocal microscopic analyses of Arabidopsis plants expressing GFP-MUB fusions showed that the modified forms are membrane-anchored with a significant enrichment on the plasma membrane. This plasma membrane location was blocked in vivo in prenyltransferase mutants and by mevinolin, which inhibits the synthesis of prenyl groups. In addition to the five MUBs with CAAX boxes, Arabidopsis has one MUB variant with a cysteine-rich C terminus distinct from the CAAX box that is also membrane-anchored, possibly through the attachment of a long chain acyl group. Although the physiological role(s) of MUBs remain unknown, the discovery of these prenylated forms further expands the diversity and potential functions of Ub-fold proteins in eukaryotic biology.


Asunto(s)
Ubiquitina/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lovastatina/química , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Pliegue de Proteína , Prenilación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
Plant Physiol ; 139(2): 722-33, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16183844

RESUMEN

Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the beta-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared alpha-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I.


Asunto(s)
Ácido Abscísico/metabolismo , Transferasas Alquil y Aril/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/farmacología , Transferasas Alquil y Aril/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , ADN de Plantas/genética , Marcación de Gen , Genes de Plantas , Germinación/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Transducción de Señal/fisiología
15.
Cancer Lett ; 202(2): 201-11, 2003 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-14643450

RESUMEN

Human PRL-1, PRL-2, and PRL-3 tyrosine phosphatases induce the malignant transformation of epithelial cells. We tested the hypothesis that the oncogenic effects of PRL occur by increasing cellular proliferation. Cells stably transfected with PRL-1 or PRL-2 exhibited 2.7-3.3-fold increases over control cells in the rate of DNA synthesis and the proportion of cells in S-phase, and they progressed more rapidly from G1 into S. In addition, cells overexpressing either PRL-1 or PRL-2 exhibited enhanced cyclin-dependent kinase 2 (CDK2) activity and significantly lower p21(Cip1/Waf1) protein levels, and PRL-1 overexpressing cells had higher cyclin A protein levels than control cells. We conclude that PRL phosphatases increase cell proliferation by stimulating progression from G1 into S phase, and this process may be dependent on the down regulation of the cyclin dependent kinase inhibitor p21(Cip1/Waf1).


Asunto(s)
Ciclo Celular/fisiología , Ciclinas/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Animales , Apoptosis/fisiología , Quinasas CDC2-CDC28/fisiología , División Celular/fisiología , Células Cultivadas , Cricetinae , Ciclina A/fisiología , Quinasa 2 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Regulación hacia Abajo , Humanos , Immunoblotting , Reacción en Cadena de la Polimerasa , Pruebas de Precipitina , Transfección
16.
Physiol Plant ; 118(1): 29-37, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12702011

RESUMEN

We have identified a mutant of Arabidopsis thaliana (lvr111) that exhibits a variegated phenotype, reduced isoprenoid pigmentation, and dwarfism in comparison with wild-type plants. Segregation analysis indicated that this phenotype was caused by a single, semi-dominant mutation and PCR-based marker mapping placed the mutation near position 56 on the RI map of chromosome IV. The lvr111 lesion was identified by genomic PCR and sequence analysis as a missense mutation (D306N) in the CLA1 gene (AT4g15560) and complementation analysis confirmed the allelic relationship between lvr111 and CLA1. CLA1 encodes 1-deoxy-d-xylulose 5-phosphate synthase, which catalyses the first step of the non-mevalonate isoprenoid biosynthetic pathway. These observations demonstrate that, unlike the albinism caused by severe alleles of CLA1, weaker alleles are associated with leaf variegation.

17.
Plant J ; 32(5): 735-47, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12472689

RESUMEN

Farnesylated proteins undergo a series of post-translational modifications, including carboxyl terminal isoprenylation, proteolysis, and methylation. In Arabidopsis thaliana, protein farnesylation has been shown to be necessary for negative regulation of ABA signaling. However, the role of post-isoprenylation protein processing in ABA signal transduction has not been described. Here, we show that the A. thaliana genome contains two distinct genes on chromosome V, AtSTE14A and AtSTE14B, which encode functional prenylcysteine alpha-carboxyl methyltransferases. AtSTE14B encodes a methyltransferase with lower apparent Kms for prenylcysteine substrates and higher specific activities than the previously described AtSTE14A-encoded methyltransferase. Furthermore, whereas AtSTE14A transcription is restricted to root and shoot tips, young leaves, and vascular tissue, AtSTE14B transcription is observed in all organs except hypocotyls and petioles. Pharmacological inhibitors of prenylcysteine alpha-carboxyl methyltransferase activity cause increased ABA sensitivity, seed dormancy, and stomatal closure, consistent with the hypothesis that prenylcysteine alpha-carboxyl methylation is necessary for negative regulation of ABA signaling. These results suggest that carboxyl methylation, which is a reversible and potentially regulated step in the processing, targeting, and function of isoprenylated plant proteins, may be an important biochemical target for introducing altered ABA sensitivity and drought tolerance into plants.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteína Metiltransferasas/genética , Proteína Metiltransferasas/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Regulación Enzimológica de la Expresión Génica , Genes de Plantas/genética , Cinética , Datos de Secuencia Molecular , Proteína Metiltransferasas/antagonistas & inhibidores , Proteína Metiltransferasas/química , Prenilación de Proteína , Homología de Secuencia de Aminoácido
18.
J Allergy Clin Immunol ; 110(5): 797-804, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417891

RESUMEN

BACKGROUND: Anaphylactic reactions to soy products have been attributed to stable class 1 food allergens. OBJECTIVE: IgE- mediated reactions to a soy-containing dietary food product in patients allergic to birch pollen were investigated. METHODS: Detailed case histories were taken from 20 patients. Their sera were analyzed for IgE (UniCAP) specific for birch, grass, mugwort, the recombinant birch allergens rBet v 1 and rBet v2, and soy protein. Extracts from birch pollen, soy isolate, rBet v 1, and the recombinant PR-10 soy protein rSAM22 were coupled to paper disks or nitrocellulose for IgE measurements (enzyme allergosorbent test) or Western blot analysis. Enzyme allergosorbent testing, Western blot inhibition, and histamine release studies were performed with the same allergens. RESULTS: Most patients (17/20) experienced facial, oropharyngeal, and/or systemic allergic symptoms within 20 minutes after ingesting the soy product for the first time. Birch pollen allergy (16/20) was common, along with oral allergy syndrome to apple (12/20) or hazelnut (11/20). IgE levels to birch and Bet v 1 but not to other inhalants were high in 18 of 20 patients. Significant IgE binding to rSAM22 occurred in 17 of 20 patients. Blot experiments with the soy isolate revealed IgE-binding bands at 17 kd (15/20), 22 kd (1/20), and 35 to 38 kd (2/20); the former was inhibited by preincubation of the sera with rBet v 1 or rSAM22. Birch extract and soy isolate, rBet v 1, and rSAM22 induced dose-dependent histamine release in the nanomolar range. CONCLUSION: Immediate-type allergic symptoms in patients with birch pollen allergy after ingestion of soy protein-containing food items can result from cross-reactivity of Bet v 1 -specific IgE to homologous pathogenesis-related proteins, particularly the PR-10 protein SAM22.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/inmunología , Hipersensibilidad a los Alimentos/inmunología , Proteínas de Soja/inmunología , Antígenos de Plantas , Betula/inmunología , Reacciones Cruzadas , Femenino , Hipersensibilidad a los Alimentos/diagnóstico , Liberación de Histamina , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Masculino , Proteínas de Plantas/inmunología , Polen/inmunología , Rinitis Alérgica Estacional/diagnóstico , Rinitis Alérgica Estacional/inmunología , Síndrome
19.
Plant Cell ; 14(11): 2787-97, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417701

RESUMEN

Abscisic acid (ABA) is an important plant hormone that modulates seed germination and plant growth and stress responses, but its signaling remains poorly understood. We investigated the role of ROP10, a member of the Arabidopsis Rop subfamily of Rho GTPases, in ABA signaling. A null rop10 mutant exhibits enhanced responses to ABA in seed germination, root elongation, and stomatal closure assays and in the induction of expression of the transcription factor MYB2, but it shows wild-type levels of ABA and normal responses to other hormones. Consistently, transgenic expression of a constitutively active form of ROP10 reduces ABA inhibition of seed germination, whereas dominant-negative mutants of ROP10 enhance ABA response and partially suppress abi2. Furthermore, ABA specifically downregulates ROP10 transcription in root tips. ROP10 is localized to the plasma membrane (PM), and PM localization is crucial for its function. These results suggest that ROP10 is a PM-localized signaling molecule that is involved specifically in the negative regulation of ABA signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP rho/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Fitocromo/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...