Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Euro Surveill ; 28(4)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700865

RESUMEN

BackgroundThe PCR quantification cycle (Cq) is a proxy measure of the viral load of a SARS-CoV-2-infected individual.AimTo investigate if Cq values vary according to different population characteristics, in particular demographic ones, and within the COVID-19 pandemic context, notably the SARS-CoV-2 type/variant individuals get infected with.MethodsWe considered all positive PCR results from Cheshire and Merseyside, England, between 6 November 2020 and 8 September 2021. Cq distributions were inspected with Kernel density estimates. Multivariable quantile regression models assessed associations between people's features and Cq.ResultsWe report Cq values for 188,821 SARS-CoV-2 positive individuals. Median Cqs increased with decreasing age for suspected wild-type virus and Alpha variant infections, but less so, if not, for Delta. For example, compared to 30-39-year-olds (median age group), 5-11-year-olds exhibited 1.8 (95% CI: 1.5 to 2.1), 2.2 (95% CI: 1.8 to 2.6) and 0.8 (95% CI: 0.6 to 0.9) higher median Cqs for suspected wild-type, Alpha and Delta positives, respectively, in multivariable analysis. 12-18-year-olds also had higher Cqs for wild-type and Alpha positives, however, not for Delta. Overall, in univariable analysis, suspected Delta positives reported 2.8 lower median Cqs than wild-type positives (95% CI: 2.7 to 2.8; p < 0.001). Suspected Alpha positives had 1.5 (95% CI: 1.4 to 1.5; p < 0.001) lower median Cqs than wild type.ConclusionsWild-type- or Alpha-infected school-aged children (5-11-year-olds) might transmit less than adults (> 18 years old), but have greater mixing exposures. Smaller differences in viral loads with age occurred in suspected Delta infections. Suspected-Alpha- or Delta-infections involved higher viral loads than wild type, suggesting increased transmission risk. COVID-19 control strategies should consider age and dominant variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , Adolescente , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Carga Viral , Inglaterra/epidemiología , Demografía
2.
J Clin Epidemiol ; 145: 14-19, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35041972

RESUMEN

OBJECTIVE: This paper motivates and justifies the use of antigen tests for epidemic control as distinct from a diagnostic test. STUDY DESIGN AND SETTING: We discuss the relative advantages of antigen and PCR tests, summarizing evidence from both the literature as well as Austrian schools, which conducted frequent, mass rapid antigen testing during the spring of 2021. While our report on testing predates Delta, we have updated the review with recent data on viral loads in breakthrough infections and more information about testing efficacy, especially in children. RESULTS: Rapid antigen tests detect proteins at the surface of virus particles, identifying the disease during its infectious phase. In contrast, PCR tests detect viral genomes: they can thus diagnose COVID-19 before the infectious phase but also react to remnants of the virus genome, even weeks after live virus ceases to be detectable in the respiratory tract. Furthermore, the logistics for administering the tests are different. Large-scale rapid antigen testing in Austrian schools showed low false-positive rates along with an approximately 10% lower effective reproduction number in the tested cohort. CONCLUSION: Using antigen tests at least 2-3 times per week could become a powerful tool to suppress the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Austria/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Humanos , Pandemias , Instituciones Académicas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...