Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Allergy Clin Immunol Glob ; 3(2): 100244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577482

RESUMEN

A case report detailing, for the first time, a case of laboratory-confirmed zoster in an astronaut on board the International Space Station is presented. The findings of reduced T-cell function, cytokine imbalance, and increased stress hormones which preceded the event are detailed. Relevance for deep space countermeasures is discussed.

2.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528030

RESUMEN

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Citometría de Flujo , Luna
3.
Life Sci Space Res (Amst) ; 40: 151-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245340

RESUMEN

Astronauts are known to exhibit a variety of immunological alterations during spaceflight including changes in leukocyte distribution and plasma cytokine concentrations, a reduction in T-cell function, and subclinical reactivation of latent herpesviruses. These alterations are most likely due to mission-associated stressors including circadian misalignment, microgravity, isolation, altered nutrition, and increased exposure to cosmic radiation. Some of these stressors may also occur in terrestrial situations. This study sought to determine if crewmembers performing winterover deployment at Palmer Station, Antarctica, displayed similar immune alterations. The larger goal was to validate a ground analog suitable for the evaluation of countermeasures designed to protect astronauts during future deep space missions. For this pilot study, plasma, saliva, hair, and health surveys were collected from Palmer Station, Antarctica, winterover participants at baseline, and at five winterover timepoints. Twenty-six subjects consented to participate over the course of two seasons. Initial sample processing was performed at Palmer, and eventually stabilized samples were returned to the Johnson Space Center for analysis. A white blood cell differential was performed (real time) using a fingerstick blood sample to determine alterations in basic leukocyte subsets throughout the winterover. Plasma and saliva samples were analyzed for 30 and 13 cytokines, respectively. Saliva was analyzed for cortisol concentration and three latent herpesviruses (DNA by qPCR), EBV, HSV1, and VZV. Voluntary surveys related to general health and adverse clinical events were distributed to participants. It is noteworthy that due to logistical constraints caused by COVID-19, the baseline samples for each season were collected in Punta Arenas, Chile, after long international travel and during isolation. Therefore, the Palmer pre-mission samples may not reflect a true normal 'baseline'. Minimal alterations were observed in leukocyte distribution during winterover. The mean percentage of monocyte concentration elevated at one timepoint. Plasma G-CSF, IL1RA, MCP-1, MIP-1ß, TNFα, and VEGF were decreased during at least one winterover timepoint, whereas RANTES was significantly increased. No statistically significant changes were observed in mean saliva cytokine concentrations. Salivary cortisol was substantially elevated throughout the entire winterover compared to baseline. Compared to shedding levels observed in healthy controls (23%), the percentage of participants who shed EBV was higher throughout all winterover timepoints (52-60%). Five subjects shed HSV1 during at least one timepoint throughout the season compared to no subjects shedding during pre-deployment. Finally, VZV reactivation, common in astronauts but exceptionally rare in ground-based stress analogs, was observed in one subject during pre-deployment and a different subject at WO2 and WO3. These pilot data, somewhat influenced by the COVID-19 pandemic, do suggest that participants at Palmer Station undergo immunological alterations similar to, but likely in reduced magnitude, as those observed in astronauts. We suggest that winterover at Palmer Station may be a suitable test analog for spaceflight biomedical countermeasures designed to mitigate clinical risks for deep space missions.


Asunto(s)
Hidrocortisona , Vuelo Espacial , Humanos , Hidrocortisona/análisis , Regiones Antárticas , Pandemias , Proyectos Piloto , Astronautas , Citocinas
4.
Crit Rev Toxicol ; 53(8): 441-479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37850621

RESUMEN

The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.


Asunto(s)
Polvo , Enfermedades Pulmonares , Cricetinae , Ratas , Humanos , Animales , Neutrófilos/patología , Pulmón , Citocinas/toxicidad , Oxidantes/toxicidad , Tamaño de la Partícula
5.
Front Physiol ; 14: 1219221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520819

RESUMEN

From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n = 27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.

7.
Biofilm ; 5: 100108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36938359

RESUMEN

Urine, humidity condensate, and other sources of non-potable water are processed onboard the International Space Station (ISS) by the Water Recovery System (WRS) yielding potable water. While some means of microbial control are in place, including a phosphoric acid/hexavalent chromium urine pretreatment solution, many areas within the WRS are not available for routine microbial monitoring. Due to refurbishment needs, two flex lines from the Urine Processor Assembly (UPA) within the WRS were removed and returned to Earth. The water from within these lines, as well as flush water, was microbially evaluated. Culture and culture-independent analysis revealed the presence of Burkholderia, Paraburkholderia, and Leifsonia. Fungal culture also identified Fusarium and Lecythophora. Hybrid de novo genome analysis of the five distinct Burkholderia isolates identified them as B. contaminans, while the two Paraburkholderia isolates were identified as P. fungorum. Chromate-resistance gene clusters were identified through pangenomic analysis that differentiated these genomes from previously studied isolates recovered from the point-of-use potable water dispenser and/or current NCBI references, indicating that unique populations exist within distinct niches in the WRS. Beyond genomic analysis, fixed samples directly from the lines were imaged by environmental scanning electron microscopy, which detailed networks of fungal-bacterial biofilms. This is the first evidence of biofilm formation within flex lines from the UPA onboard the ISS. For all bacteria isolated, biofilm potential was further characterized, with the B. contaminans isolates demonstrating the most considerable biofilm formation. Moreover, the genomes of the B. contaminans revealed secondary metabolite gene clusters associated with quorum sensing, biofilm formation, antifungal compounds, and hemolysins. The potential production of these gene cluster metabolites was phenotypically evaluated through biofilm, bacterial-fungal interaction, and hemolytic assays. Collectively, these data identify the UPA flex lines as a unique ecological niche and novel area of biofilm growth within the WRS. Further investigation of these organisms and their resistance profiles will enable engineering controls directed toward biofilm prevention in future space station water systems.

8.
bioRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993537

RESUMEN

From the early days of spaceflight to current missions, astronauts continue to be exposed to multiple hazards that affect human health, including low gravity, high radiation, isolation during long-duration missions, a closed environment and distance from Earth. Their effects can lead to adverse physiological changes and necessitate countermeasure development and/or longitudinal monitoring. A time-resolved analysis of biological signals can detect and better characterize potential adverse events during spaceflight, ideally preventing them and maintaining astronauts' wellness. Here we provide a time-resolved assessment of the impact of spaceflight on multiple astronauts (n=27) by studying multiple biochemical and immune measurements before, during, and after long-duration orbital spaceflight. We reveal space-associated changes of astronauts' physiology on both the individual level and across astronauts, including associations with bone resorption and kidney function, as well as immune-system dysregulation.

9.
Front Physiol ; 14: 903072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798941

RESUMEN

Isolation is stressful and negatively affects sleep and mood and might also affect the structure and function of the brain. Physical exercise improves brain function. We investigated the influence of physical exercise during isolation on sleep, affect, and neurobehavioral function. N = 16 were isolated for 30 days with daily exercise routines (ISO100) and n = 16 isolated for 45 days with every second day exercise (ISO50). N = 27 were non-isolated controls who either exercised on a daily basis (CTRLEx) or refused exercise (CTRLNonEx) for 30 days. At the beginning and the end of each intervention, intravenous morning cortisol, melatonin, brain-derived neurotrophic factor and IGF-1, positive and negative affect scales, electroencephalography, cognitive function, and sleep patterns (actigraphy) were assessed. High levels of cortisol were observed for the isolated groups (p < .05) without negative effects on the brain, cognitive function, sleep, and mood after 4 to 6 weeks of isolation, where physical exercise was performed regularly. An increase in cortisol and impairments of sleep quality, mood, cognitive function, and neurotrophic factors (p < .05) were observed after 4 weeks of absence of physical exercise in the CTRLNonEx group. These findings raise the assumption that regular physical exercise routines are a key component during isolation to maintain brain health and function.

10.
Med Sci Sports Exerc ; 55(3): 548-557, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563092

RESUMEN

PURPOSE: Initial military training (IMT) is a transitionary period wherein immune function may be suppressed and infection risk heightened due to physical and psychological stress, communal living, and sleep deprivation. This study characterized changes in biomarkers of innate and adaptive immune function, and potential modulators of those changes, in military recruits during IMT. METHODS: Peripheral leukocyte distribution and mitogen-stimulated cytokine profiles were measured in fasted blood samples, Epstein-Barr (EBV), varicella zoster (VZV), and herpes simplex 1 (HSV1) DNA was measured in saliva by quantitative polymerase chain reaction as an indicator of latent herpesvirus reactivation, and diet quality was determined using the healthy eating index measured by food frequency questionnaire in 61 US Army recruits (97% male) at the beginning (PRE) and end (POST) of 22-wk IMT. RESULTS: Lymphocytes and terminally differentiated cluster of differentiation (CD)4+ and CD8+ T cells increased PRE to POST, whereas granulocytes, monocytes, effector memory CD4+ and CD8+ T cells, and central memory CD8+ T cells decreased ( P ≤ 0.02). Cytokine responses to anti-CD3/CD28 stimulation were higher POST compared with PRE, whereas cytokine responses to lipopolysaccharide stimulation were generally blunted ( P < 0.05). Prevalence of EBV reactivation was higher at POST ( P = 0.04), but neither VZV nor HSV1 reactivation was observed. Diet quality improvements were correlated with CD8+ cell maturation and blunted proinflammatory cytokine responses to anti-CD3/CD28 stimulation. CONCLUSIONS: Lymphocytosis, maturation of T-cell subsets, and increased T-cell reactivity were evident POST compared with PRE IMT. Although EBV reactivation was more prevalent at POST, no evidence of VZV or HSV1 reactivation, which are more common during severe stress, was observed. Findings suggest increases in the incidence of EBV reactivation were likely appropriately controlled by recruits and immune-competence was not compromised at the end of IMT.


Asunto(s)
Personal Militar , Esfuerzo Físico , Privación de Sueño , Estrés Psicológico , Femenino , Humanos , Masculino , Antígenos CD28/sangre , Linfocitos T CD8-positivos/metabolismo , Citocinas/sangre , Estrés Psicológico/inmunología , Privación de Sueño/inmunología , Linfocitos T CD4-Positivos/metabolismo , Esfuerzo Físico/inmunología
11.
Front Physiol ; 14: 1322852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288353

RESUMEN

Introduction: Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The in vitro cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions. A novel two-valve reaction tube (RT) has been developed to enable the execution of the CRA on the International Space Station (ISS). Methods: In a comprehensive test campaign, we assessed the suitability of three materials (silicone, C-Flex, and PVC) for the RT design in terms of biochemical compatibility, chemical stability, and final data quality analysis. Furthermore, we thoroughly examined additional quality criteria such as safety, handling, and the frozen storage of antigens within the RTs. The validation of the proposed crew procedure was conducted during a parabolic flight campaign. Results: The selected material and procedure proved to be both feasible and secure yielding consistent and dependable data outcomes. This new hardware allows for the stimulation of blood samples on board the ISS, with subsequent analysis still conducted on the ground. Discussion: The resultant data promises to offer a more accurate understanding of the stress-induced neuroendocrine modulation of immunity during space travel providing valuable insights for the scientific community. Furthermore, the versatile nature of the RT suggests its potential utility as a testing platform for various other assays or sample types.

12.
Sci Rep ; 12(1): 20847, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522361

RESUMEN

Long-duration spaceflight impacts human physiology, including well documented immune system dysregulation. The space food system has the potential to serve as a countermeasure to maladaptive physiological changes during spaceflight. However, the relationship between dietary requirements, the food system, and spaceflight adaptation requires further investigation to adequately define countermeasures and prioritize resources on future spaceflight missions. We evaluated the impact of an enhanced spaceflight diet, with increased quantity and variety of fruits, vegetables, fish, and other foods rich in flavonoids and omega-3 fatty acids, compared to a standard spaceflight diet on multiple health and performance outcomes in 16 subjects over four 45-day closed chamber missions in the NASA Human Exploration Research Analog (HERA). Subjects consuming the enhanced spaceflight diet had lower cholesterol levels, lower stress (i.e. cortisol levels), better cognitive speed, accuracy, and attention, and a more stable microbiome and metatranscriptome than subjects consuming the standard diet. Although no substantial changes were observed in the immune response, there were also no immune challenges, such as illness or infection, so the full benefits of the diet may not have been apparent in these analog missions. These results indicate that a spaceflight diet rich in fruits, vegetables, and omega-3 fatty acids produces significant health and performance benefits even over short durations. Further investigation is required to fully develop dietary countermeasures to physiological decrements observed during spaceflight. These results will have implications for food resource prioritization on spaceflight missions.


Asunto(s)
Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Vuelo Espacial , Animales , Humanos , Dieta , Cognición , Inmunidad
13.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891418

RESUMEN

We encountered two cases of varicella occurring in newborn infants. Because the time between birth and the onset of the illness was much shorter than the varicella incubation period, the cases suggested that the infection was maternally acquired, despite the fact that neither mother experienced clinical zoster. Thus, we tested the hypothesis that VZV frequently reactivates asymptomatically in late pregnancy. The appearance of DNA-encoding VZV genes in saliva was used as an indicator of reactivation. Saliva was collected from 5 women in the first and 14 women in the third trimesters of pregnancy and analyzed at two different sites, at one using nested PCR and at the other using quantitative PCR (qPCR). No VZV DNA was detected at either site in the saliva of women during the first trimester; however, VZV DNA was detected in the majority of samples of saliva (11/12 examined by nested PCR; 7/10 examined by qPCR) during the third trimester. These observations suggest that VZV reactivation occurs commonly during the third trimester of pregnancy. It is possible that this phenomenon, which remains in most patients below the clinical threshold, provides an endogenous boost to immunity and, thus, is beneficial.


Asunto(s)
Varicela , Herpes Zóster , ADN Viral/análisis , ADN Viral/genética , Femenino , Herpesvirus Humano 3/genética , Humanos , Recién Nacido , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Front Biosci (Landmark Ed) ; 27(7): 215, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35866402

RESUMEN

BACKGROUND: We have previously shown that the anti-tumor activity of human lymphocytes is diminished in vitro after 12-hours pre-exposure to simulated microgravity (SMG). Here we used an immunocompromised mouse model to determine if this loss of function would extend in vivo, and to also test the efficacy of IL-2 and zoledronic acid (ZOL) therapy as a potential countermeasure against SMG-induced immune dysfunction. We adoptively transferred human lymphocytes that were exposed to either SMG or 1G-control into NSG-Tg (Hu-IL15) mice 1-week after they were injected with a luciferase-tagged human chronic myeloid leukemia (K562) cell line. Tumor growth was monitored 2x weekly with bioluminescence imaging (BLI) for up to 6-weeks. RESULTS: Mice that received lymphocytes exposed to SMG showed greater tumor burden compared to those receiving lymphocytes exposed to 1G (week 6 BLI: 1.8e10 ± 8.07e9 versus 2.22e8 ± 1.39e8 photons/second; p < 0.0001). Peak BLI was also higher in the SMG group compared to 1G-control (2.34e10 ± 1.23e10 versus 3.75e8 ± 1.56e8 photons/second; p = 0.0062). Exposure to SMG did not affect the ability of human lymphocytes to engraft or evoke xeno-graft-versus-host disease in the mice. Additionally, we injected the mice with IL-2 and zoledronic acid (ZOL) to expand and activate the anti-tumor activity of NK cells and γ δ-T cells, respectively. This treatment was found to revive the loss of anti-leukemic function observed in vivo when lymphocytes were pre-exposed to SMG. CONCLUSIONS: Microgravity plays a contributory role in loss of tumor control in vivo. Immuno-stimulating agents like ZOL+IL-2 may offer an important countermeasure for immune dysregulation during prolonged spaceflight.


Asunto(s)
Ingravidez , Animales , Humanos , Interleucina-2/farmacología , Células Asesinas Naturales , Ratones , Linfocitos T , Ácido Zoledrónico/farmacología
15.
Curr Issues Mol Biol ; 44(2): 654-669, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35723331

RESUMEN

The effect of confined and isolated experience on astronauts' health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA's Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.

16.
Viruses ; 14(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458519

RESUMEN

Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment.


Asunto(s)
Dermatitis , Infecciones por Virus de Epstein-Barr , Exantema , Herpes Simple , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Vuelo Espacial , Virus no Clasificados , Virus , Biomarcadores , ADN Viral/análisis , Herpes Simple/etiología , Herpesvirus Humano 3/fisiología , Herpesvirus Humano 4 , Humanos , Activación Viral
17.
Biomedicines ; 10(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203657

RESUMEN

(1) Background: After spending a year wintering in Antarctica, individual expedition members have reported increased or even new allergic reactions to environmental allergens after their return. (2) Methods: Blood samples from five overwintering crews were analyzed using the chip based multiplex ALEX Allergy Explorer (MacroArray Diagnostics GmbH, Austria). (3) Results: About one third of the 39 participants displayed specific IgEs against pollen. In most individuals, kinetics showed a reduction in the specific IgE at the time about nine months after deployment to Antarctica. Five participants had the highest specific IgE levels after returning to the "normal" world. The examination of the specific IgE relative to house dust mites and storage mites showed different kinetics. Six out of 10 had the highest specific IgE concentrations at the inner Antarctic measurement time point. These data corresponded well to the general situation in the stations. At the stations themselves, there were almost no pollen particle load, especially at Concordia. (4) Conclusions: Antarctic long-term confinement can induce an altered immune function, which is in some individuals pronounced after return to the familiar allergen environment. Future prospective studies in larger cohorts are needed to further specify these first results.

18.
Cells ; 12(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36611835

RESUMEN

The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Inteligencia Artificial , Medio Ambiente Extraterrestre , Ritmo Circadiano
20.
Life Sci Space Res (Amst) ; 31: 29-33, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34689947

RESUMEN

During long duration orbital space missions, astronauts experience immune system dysregulation, the persistent reactivation of latent herpesviruses, and some degree of clinical incidence. During planned NASA 'Artemis' deep space missions the stressors that cause this phenomenon will increase, while clinical care capability will likely be reduced. There is currently minimal clinical laboratory capability aboard the International Space Station (ISS). The ability to monitor the white blood cell count (WBC) and differential during spaceflight has been an unmet NASA medical requirement, primarily due to a lack of capable hardware. We performed ground and flight validation of a device designed to monitor WBC and differential within minutes from a fingerstick blood sample. This device is miniaturized, robust, and generally compatible with microgravity operations. Ground testing for spaceflight consisted of vibration tolerance, power/battery and interface requirements, electromagnetic interference (EMI), and basic evaluation of sample preparation and operations in the context of spaceflight constraints. The in-flight validation performed aboard the ISS by two astronauts included assessment of three levels of control solution (blood) samples as well as a real time analysis of a fingerstick blood sample by one of the crewmembers. Flight and ground testing of the same lot of control solutions yielded similar total WBC values. There was some select discrepancy between flight and ground data for the differential analysis. However, the data suggest that this issue is due to compromise of the control solutions as a result of storage length before flight operations, and not due to a microgravity-associated issue with instrument performance. This evaluation also yielded lessons learned regarding crewmember training for technique-sensitive small-volume biosample collection and handling in microgravity. The fingerstick analysis was successful and was the first real-time hematology assessment performed during spaceflight. This device may provide an in-mission monitoring capability for astronauts thereby assisting Flight Surgeons and the crew medical officer during both orbital and deep space missions.


Asunto(s)
Vuelo Espacial , Ingravidez , Astronautas , Humanos , Sistemas de Atención de Punto , Tecnología , Ingravidez/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...