Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786247

RESUMEN

The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.

2.
Phys Life Rev ; 48: 205-221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377727

RESUMEN

In primary or idiopathic osteoarthritis (OA), it is unclear which factors trigger the shift of articular chondrocyte activity from pro-anabolic to pro-catabolic. In fact, there is a controversy about the aetiology of primary OA, either mechanical or inflammatory. Chondrocytes are mechanosensitive cells, that integrate mechanical stimuli into cellular responses in a process known as mechanotransduction. Mechanotransduction occurs thanks to the activation of mechanosensors, a set of specialized proteins that convert physical cues into intracellular signalling cascades. Moderate levels of mechanical loads maintain normal tissue function and have anti-inflammatory effects. In contrast, mechanical over- or under-loading might lead to cartilage destruction and increased expression of pro-inflammatory cytokines. Simultaneously, mechanotransduction processes can regulate and be regulated by pro- and anti-inflammatory soluble mediators, both local (cells of the same joint, i.e., the chondrocytes themselves, infiltrating macrophages, fibroblasts or osteoclasts) and systemic (from other tissues, e.g., adipokines). Thus, the complex process of mechanotransduction might be altered in OA, so that cartilage-preserving chondrocytes adopt a different sensitivity to mechanical signals, and mechanic stimuli positively transduced in the healthy cartilage may become deleterious under OA conditions. This review aims to provide an overview of how the biochemical exposome of chondrocytes can alter important mechanotransduction processes in these cells. Four principal mechanosensors, i.e., integrins, Ca2+ channels, primary cilium and Wnt signalling (canonical and non-canonical) were targeted. For each of these mechanosensors, a brief summary of the response to mechanical loads under healthy or OA conditions is followed by a concise overview of published works that focus on the further regulation of the mechanotransduction pathways by biochemical factors. In conclusion, this paper discusses and explores how biological mediators influence the differential behaviour of chondrocytes under mechanical loads in healthy and primary OA.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/metabolismo , Condrocitos/metabolismo , Mecanotransducción Celular/fisiología , Citocinas/metabolismo , Citocinas/farmacología , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología
3.
JOR Spine ; 6(4): e1294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156054

RESUMEN

The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.

4.
Front Cell Dev Biol ; 10: 924692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846355

RESUMEN

Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.

5.
J Orthop Res ; 40(10): 2362-2371, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35106811

RESUMEN

Intervertebral disc (IVD) degeneration is a spinal disorder that triggers an inflammatory response and subsequent development of spinal pseudoarthrosis. The aim of the present study is to elucidate the role of the extracellular signal-regulated kinase (ERK) pathway in inflammation-induced IVD cells. Inflammatory human nucleus pulposus (NP) cells (NPCs) were induced using tumor necrosis factor-α and the ERK pathway was blocked using a selective molecule-based inhibitor U0126. Gene expression of catabolic and anabolic markers, proinflammatory, and NPCs markers was investigated. The enzymatic activity of matrix metalloproteinases (MMP)2/MMP9 was determined by gelatin zymography and nitrite production was assessed by Griess reaction. The NPC metabolic activity and viability were assessed using resazurin sodium-salt and live/dead assays, and subsequently, the specificity of U0126 on ERK1/2 signaling was determined. The catabolic enzyme MMP3 (p = 0.0001) and proinflammatory cytokine interleukin 6 (p = 0.036) were downregulated by U0126 in NPCs under inflammatory conditions. A significant increase of the cytokeratin 19 (p = 0.0031) was observed, suggesting a partial and possible recovery of the NP phenotype. U0126 does not seem to have an effect on prostaglandin production, aggrecanases, or other anabolic genes. We confirmed that U0126 selectively blocks the ERK phosphorylation and only affects the cell metabolic activity without the reduction of viable cells. Inhibition of ERK signaling downregulates important metalloproteinases and proinflammatory cytokines, and upregulates some NP markers, suggesting its potential to treat IVD degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Butadienos , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gelatina/metabolismo , Gelatina/farmacología , Humanos , Interleucina-6/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Queratina-19/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Nitrilos , Nitritos/metabolismo , Nitritos/farmacología , Núcleo Pulposo/metabolismo , Prostaglandinas/metabolismo , Prostaglandinas/farmacología , Sodio/metabolismo , Sodio/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Strength Cond Res ; 34(3): 623-631, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31703044

RESUMEN

Xie, T, Crump, KB, Ni, R, Meyer, CH, Hart, JM, Blemker, SS, and Feng, X. Quantitative relationships between individual lower-limb muscle volumes and jump and sprint performances of basketball players. J Strength Cond Res 34(3): 623-631, 2020-Lower body skeletal muscles play an essential role in athletic performance; however, because of the difficulty in obtaining detailed information of each individual muscle, the quantitative relationships between individual muscle volumes and performance are not well studied. The aim of this study was to accurately measure individual muscle volumes and identify the muscles with strong correlations with jump and sprint performance metrics for basketball players. Ten male varsity basketball players and 8 club players were scanned using magnetic resonance imaging (MRI) and instructed to perform various jump and sprint tests. The volumes of all lower-limb muscles were calculated from MRI and normalized by body surface area to reduce the effect of the body size differences. In analysis, feature selection was first used to identify the most relevant muscles, followed by correlation analysis to quantify the relationships between the selected muscles and each performance metric. Vastus medialis and semimembranosus were found to be the most relevant muscles for jump while adductor longus and vastus medialis were selected for sprint. Strong correlations (r = 0.664-0.909) between the selected muscles and associated performance tests were found for varsity players, and moderate correlations (r = -0.203 to 0.635) were found for club players. One possible application is that for well-trained varsity players, a targeted training scheme focusing on the selected muscles may be an effective method to further improve jump and sprint performances.


Asunto(s)
Rendimiento Atlético/fisiología , Baloncesto/fisiología , Extremidad Inferior/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Adolescente , Humanos , Masculino , Músculo Cuádriceps/fisiología , Carrera/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...