Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mem Cognit ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684557

RESUMEN

The present experiments examined whether the temporal distribution of procedural category learning experiences would impact learning outcomes. Participants completed the remote category learning experiments on a smartphone in one of two learning conditions: massed or distributed. Consistent with expectations, distributed learners in both experiments reached higher accuracy levels than massed learners. In Experiment 1 the effect disappeared after accounting for reaction time differences, suggesting that it was driven by attentional mechanisms. In Experiment 2, the spacing advantage was only present for previously studied items during a post-learning test, suggesting a role of consolidation. In both experiments, it seems likely that temporal spacing helped participants discover the optimal information-integration categorization strategy. These results suggest that adult category learning is facilitated by temporal spacing. Future work may further explore the effects of temporal and contextual distinctiveness of learning experiences on category learning outcomes.

2.
J Invertebr Pathol ; 203: 108064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311230

RESUMEN

Protists in general comprise about one-third of the parasitic species infecting arthropod vectors, the role of free-living and epibiotic ciliates on mosquitoes have been insufficiently studied either due to their low pathogenicity or facultative parasites. Studies have shown that exposure of Paramecium ciliate protists, like Vorticella species, to first instar Culex nigripalpus Theobald, larvae delayed larval development and reduced biomass of emerged adults due to competition for food sources like bacteria and other microbes essential to mosquito growth and survival. Thus, we report on the capacity of a Vorticella sp. protist's ability to cross-infect host species and parasitize multiple mosquito larvae. The unique adapted behavior with the ability to remain on the exuviae in tree hole habitats provide a novel delivery system to develop products for target species-specific mosquitocides, larvicides, or viricides to be applied and sustained in aquatic systems.


Asunto(s)
Aedes , Culex , Oligohimenóforos , Animales , Mosquitos Vectores , Control de Mosquitos , Larva
3.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769878

RESUMEN

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Asunto(s)
Síndromes de Inmunodeficiencia , Fosfolipasa C gamma , Humanos , Enfermedades Autoinmunes , Calcio/metabolismo , Síndromes de Inmunodeficiencia/genética , Mutación , Fosfolipasa C gamma/genética
4.
Oncogene ; 43(8): 555-565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030788

RESUMEN

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Masculino , Humanos , Melanoma/genética , Reparación del ADN/genética , ADN , Inestabilidad Genómica , Aneuploidia , Meiosis , Antígenos de Neoplasias/metabolismo
5.
Res Sq ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162820

RESUMEN

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME than can be targeted therapeutically in cancer.

6.
Biomol NMR Assign ; 17(1): 101-106, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022617

RESUMEN

UBQLN1 functions in autophagy and proteasome-mediated protein degradation. It contains an N-terminal ubiquitin-like domain (UBL), a C-terminal ubiquitin-associated domain (UBA), and a flexible central region which functions as a chaperone to prevent protein aggregation. Here, we report the 1H, 15N, and 13C resonance assignments for the backbone (NH, N, C', Cα, and Hα) and sidechain Cß atoms of the UBQLN1 UBA and an N-terminally adjacent segment called the UBA-adjacent domain (UBAA). We find a subset of the resonances corresponding to the UBAA to have concentration-dependent chemical shifts, likely due to self-association. We also find the backbone amide nitrogen of T572 to be shifted upfield relative to the average value for a threonine amide nitrogen, a phenomenon likely caused by T572 Hγ1 engagement in a hydrogen bond with adjacent backbone carbonyl atoms. The assignments described in this manuscript can be used to study the protein dynamics of the UBQLN1 UBA and UBAA as well as the interaction of these domains with other proteins.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Unión Proteica , Resonancia Magnética Nuclear Biomolecular , Ubiquitina/metabolismo , Chaperonas Moleculares , Nitrógeno
7.
Structure ; 31(4): 395-410.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36827983

RESUMEN

The E3 ligase E6AP/UBE3A has a dedicated binding site in the 26S proteasome provided by the RAZUL domain of substrate receptor hRpn10/S5a/PSMD4. Guided by RAZUL sequence similarity, we test and demonstrate here that the E6AP AZUL binds transiently to the UBA of proteasomal shuttle factor UBQLN1/2. Despite a weak binding affinity, E6AP AZUL is recruited to UBQLN2 biomolecular condensates in vitro and E6AP interacts with UBQLN1/2 in cellulo. Steady-state and transfer nuclear Overhauser effect (NOE) experiments indicate direct interaction of AZUL with UBQLN1 UBA. Intermolecular contacts identified by NOE spectroscopy (NOESY) data were combined with AlphaFold2-Multimer predictions to yield an AZUL:UBA model structure. We additionally identify an oligomerization domain directly adjacent to UBQLN1/2 UBA (UBA adjacent [UBAA]) that is α-helical and allosterically reconfigured by AZUL binding to UBA. These data lead to a model of E6AP recruitment to UBQLN1/2 by AZUL:UBA interaction and provide fundamental information on binding requirements for interactions in condensates and cells.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Sitios de Unión , Ubiquitina-Proteína Ligasas/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominios Proteicos , Citoplasma/metabolismo , Unión Proteica
8.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36230889

RESUMEN

Retinoblastoma is the most common eye cancer in children and is fatal if left untreated. Over the past three decades, chemotherapy has become the mainstay of eye-sparing treatment. Nevertheless, chemoresistance continues to represent a major challenge leading to ocular and systemic toxicity, vision loss, and treatment failure. Unfortunately, the mechanisms leading to chemoresistance remain incompletely understood. Here, we engineered low-passage human retinoblastoma cells to study the early molecular mechanisms leading to resistance to carboplatin, one of the most widely used agents for treating retinoblastoma. Using single-cell next-generation RNA sequencing (scRNA-seq) and single-cell barcoding technologies, we found that carboplatin induced rapid transcriptomic reprogramming associated with the upregulation of PI3K-AKT pathway targets, including ABC transporters and metabolic regulators. Several of these targets are amenable to pharmacologic inhibition, which may reduce the emergence of chemoresistance. We provide evidence to support this hypothesis using a third-generation inhibitor of the ABCB1 transporter.

9.
Int J Quantum Chem ; 122(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36213174

RESUMEN

Histidine (an imidazole-based amino acid) is a promising building block for short aromatic peptides containing a proton donor/acceptor moiety. Previous studies have shown that polyalanine helical peptides substituted at regular intervals with histidine residues exhibit both structural stability as well as high proton affinity and high conductivity. Here, we present first-principle calculations of non-aqueous histidine-containing 310-, α- and π-helices and show that they are able to form hydrogen-bonded networks mimicking proton wires that have the ability to shuttle protons via the Grotthuss shuttling mechanism. The formation of these wires enhances the stability of the helices, and our structural characterizations confirm that the secondary structures are conserved despite distortions of the backbones. In all cases, the helices exhibit high proton affinity and proton transfer barriers on the order of 1~4 kcal/mol. Zero-point energy calculations suggest that for these systems, ground state vibrational energy can provide enough energy to cross the proton transport energy barrier. Additionally, ab initio molecular dynamics results suggests that the protons are transported unidirectionally through the wire at a rate of approximately 2 Å every 20 fs. These results demonstrate that efficient deprotonation-controlled proton wires can be formed using non-aqueous histidine-containing helical peptides.

10.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954340

RESUMEN

Uveal melanoma (UM) is the most common primary cancer of the eye and is associated with a high rate of metastatic death. UM can be stratified into two main classes based on metastatic risk, with class 1 UM having a low metastatic risk and class 2 UM having a high metastatic risk. Class 2 UM have a distinctive genomic, transcriptomic, histopathologic, and clinical phenotype characterized by biallelic inactivation of the BAP1 tumor-suppressor gene, an immune-suppressive microenvironment enriched for M2-polarized macrophages, and poor response to checkpoint-inhibitor immunotherapy. To identify potential mechanistic links between BAP1 loss and immune suppression in class 2 UM, we performed an integrated analysis of UM samples, as well as genetically engineered UM cell lines and uveal melanocytes (UMC). Using RNA sequencing (RNA-seq), we found that the most highly upregulated gene associated with BAP1 loss across these datasets was PROS1, which encodes a ligand that triggers phosphorylation and activation of the immunosuppressive macrophage receptor MERTK. The inverse association between BAP1 and PROS1 in class 2 UM was confirmed by single-cell RNA-seq, which also revealed that MERTK was upregulated in CD163+ macrophages in class 2 UM. Using ChIP-seq, BAP1 knockdown in UM cells resulted in an accumulation of H3K27ac at the PROS1 locus, suggesting epigenetic regulation of PROS1 by BAP1. Phosphorylation of MERTK in RAW 264.7 monocyte-macrophage cells was increased upon coculture with BAP1-/- UMCs, and this phosphorylation was blocked by depletion of PROS1 in the UMCs. These findings were corroborated by multicolor immunohistochemistry, where class 2/BAP1-mutant UMs demonstrated increased PROS1 expression in tumor cells and increased MERTK phosphorylation in CD163+ macrophages compared with class 1/BAP1-wildtype UMs. Taken together, these findings provide a mechanistic link between BAP1 loss and the suppression of the tumor immune microenvironment in class 2 UMs, and they implicate the PROS1-MERTK pathway as a potential target for immunotherapy in UM.

11.
Cells ; 11(12)2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741037

RESUMEN

Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.


Asunto(s)
Apoptosis , Receptor fas , Apoptosis/fisiología , Análisis por Conglomerados , Proteína Ligando Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor fas/metabolismo
12.
Pathogens ; 10(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34959530

RESUMEN

Mosquito and arbovirus surveillance is essential to the protection of public health. A majority of surveys are undertaken at ground level. However, mosquitoes shelter, breed, and quest for hosts across vertical strata, thus limiting our ability to fully describe mosquito and arboviral communities. To elucidate patterns of mosquito vertical stratification, canopy traps were constructed to sample mosquitoes at heights of 1.5, 5.0, and 8.7 m across three different landscape types in a Florida coastal conservation area. We assessed trapping efforts using individual-based rarefaction and extrapolation. The effects of height, landscape, site location, and sampling date on mosquito community composition were parsed out using permutational ANOVA on a Hellinger-transformed Bray-Curtis dissimilarity abundance matrix. Lastly, a generalized linear mixed effects model (GLMM) was used to explore species-specific vertical patterns. We observed differences in sampling effort and community composition structure across various heights and landscapes. Our GLMM revealed significant effects of trap height for Aedes taeniorhynchus, Anopheles crucians, Anopheles quadrimaculatus, and Culex coronator, but not for Culex nigripalpus, the ultra-dominant species present in this area. Together these data provide evidence that height and landscape significantly affect mosquito community structures and highlight a need to develop sampling regimes to target specific vector and nuisance species at their preferred height and across different landscape types.

13.
BMC Genomics ; 22(1): 419, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090344

RESUMEN

BACKGROUND: Recent advances in single cell sequencing technologies allow for greater resolution in assessing tumor clonality using chromosome copy number variations (CNVs). While single cell DNA sequencing technologies are ideal to identify tumor sub-clones, they remain expensive and in contrast to single cell RNA-seq (scRNA-seq) methods are more limited in the data they generate. However, CNV data can be inferred from scRNA-seq and bulk RNA-seq, for which several tools have been developed, including inferCNV, CaSpER, and HoneyBADGER. Inferences regarding tumor clonality from CNV data (and other sources) are frequently visualized using phylogenetic plots, which previously required time-consuming and error-prone, manual analysis. RESULTS: Here, we present Uphyloplot2, a python script that generates phylogenetic plots directly from inferred RNA-seq data, or any Newick formatted dendrogram file. The tool is publicly available at https://github.com/harbourlab/UPhyloplot2/ . CONCLUSIONS: Uphyloplot2 is an easy-to-use tool to generate phylogenetic plots to depict tumor clonality from scRNA-seq data and other sources.


Asunto(s)
Variaciones en el Número de Copia de ADN , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Filogenia , RNA-Seq , Análisis de Secuencia de ARN , Programas Informáticos
14.
J Chem Theory Comput ; 17(5): 2714-2724, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33830762

RESUMEN

Grid Inhomogeneous Solvation Theory (GIST) maps out solvation thermodynamic properties on a fine meshed grid and provides a statistical mechanical formalism for thermodynamic end-state calculations. However, differences in how long-range nonbonded interactions are calculated in molecular dynamics engines and in the current implementation of GIST have prevented precise comparisons between free energies estimated using GIST and those from other free energy methods such as thermodynamic integration (TI). Here, we address this by presenting PME-GIST, a formalism by which particle mesh Ewald (PME)-based electrostatic energies and long-range Lennard-Jones (LJ) energies are decomposed and assigned to individual atoms and the corresponding voxels they occupy in a manner consistent with the GIST approach. PME-GIST yields potential energy calculations that are precisely consistent with modern simulation engines and performs these calculations at a dramatically faster speed than prior implementations. Here, we apply PME-GIST end-state analyses to 32 small molecules whose solvation free energies are close to evenly distributed from 2 kcal/mol to -17 kcal/mol and obtain solvation energies consistent with TI calculations (R2 = 0.99, mean unsigned difference 0.8 kcal/mol). We also estimate the entropy contribution from the second and higher order entropy terms that are truncated in GIST by the differences between entropies calculated in TI and GIST. With a simple correction for the high order entropy terms, PME-GIST obtains solvation free energies that are highly consistent with TI calculations (R2 = 0.99, mean unsigned difference = 0.4 kcal/mol) and experimental results (R2 = 0.88, mean unsigned difference = 1.4 kcal/mol). The precision of PME-GIST also enables us to show that the solvation free energy of small hydrophobic and hydrophilic molecules can be largely understood based on perturbations of the solvent in a region extending a few solvation shells from the solute. We have integrated PME-GIST into the open-source molecular dynamics analysis software CPPTRAJ.

15.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674364

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has been a transformative technology in many research fields. Dimensional reduction techniques such as UMAP and tSNE are used to visualize scRNA-seq data in two or three dimensions for cells to be clustered in biologically meaningful ways. Subsequently, gene expression is frequently mapped onto these plots to show the distribution of gene expression across the plots, for instance to distinguish cell types. However, plotting each cell with only a single color leads to repetitive and unintuitive representations. Here, we present PieParty, which allows scRNA-seq data to be plotted such that every cell is represented as a pie chart, and every slice in the pie charts corresponds to the gene expression of a single gene. This allows for the simultaneous visualization of the expression of multiple genes and gene networks. The resulting figures are information dense, space efficient, and highly intuitive. PieParty is publicly available on GitHub at https://github.com/harbourlab/PieParty.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Secuencia de Bases/genética , Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Transcriptoma/genética , Secuenciación del Exoma/métodos
16.
J Comput Aided Mol Des ; 34(12): 1219-1228, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918236

RESUMEN

SARS-CoV-2 recently jumped species and rapidly spread via human-to-human transmission to cause a global outbreak of COVID-19. The lack of effective vaccine combined with the severity of the disease necessitates attempts to develop small molecule drugs to combat the virus. COVID19_GIST_HSA is a freely available online repository to provide solvation thermodynamic maps of COVID-19-related protein small molecule drug targets. Grid inhomogeneous solvation theory maps were generated using AmberTools cpptraj-GIST, 3D reference interaction site model maps were created with AmberTools rism3d.snglpnt and hydration site analysis maps were created using SSTMap code. The resultant data can be applied to drug design efforts: scoring solvent displacement for docking, rational lead modification, prioritization of ligand- and protein- based pharmacophore elements, and creation of water-based pharmacophores. Herein, we demonstrate the use of the solvation thermodynamic mapping data. It is hoped that this freely provided data will aid in small molecule drug discovery efforts to defeat SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Modelos Químicos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Pandemias , Neumonía Viral/tratamiento farmacológico , Termodinámica , Proteínas no Estructurales Virales/efectos de los fármacos , Antivirales/química , Betacoronavirus/química , Sitios de Unión , COVID-19 , Dominio Catalítico , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Agua , Tratamiento Farmacológico de COVID-19
17.
ChemRxiv ; 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32511289

RESUMEN

SARS-CoV-2 recently jumped species and rapidly spread via human-to-human transmission to cause a global outbreak of COVID-19. The lack of effective vaccine combined with the severity of the disease necessitates attempts to develop small molecule drugs to combat the virus. COVID19_GIST_HSA is a freely available online repository to provide solvation thermodynamic maps of COVID-19-related protein small molecule drug targets. Grid Inhomogeneous Solvation Theory maps were generated using AmberTools cpptraj-GIST and Hydration Site Analysis maps were created using SSTmap code. The resultant data can be applied to drug design efforts: scoring solvent displacement for docking, rational lead modification, prioritization of ligand- and protein- based pharmacophore elements, and creation of water-based pharmacophores. Herein, we demonstrate the use of the solvation thermodynamic mapping data. It is hoped that this freely provided data will aid in small molecule drug discovery efforts to defeat SARS-CoV-2.

18.
PLoS One ; 14(8): e0220113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430292

RESUMEN

Recently much effort has been invested in using convolutional neural network (CNN) models trained on 3D structural images of protein-ligand complexes to distinguish binding from non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray structures and binding affinity data has required the use of constructed datasets for the training and evaluation of CNN molecular recognition models. Here, we outline various sources of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUD-E). We have constructed and performed tests to investigate whether CNN models developed using DUD-E are properly learning the underlying physics of molecular recognition, as intended, or are instead learning biases inherent in the dataset itself. We find that superior enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalization of the pattern of protein-ligand interactions. Comparing additional deep learning models trained on PDBbind datasets, we found that their enrichment performances using DUD-E are not superior to the performance of the docking program AutoDock Vina. Together, these results suggest that biases that could be present in constructed datasets should be thoroughly evaluated before applying them to machine learning based methodology development.


Asunto(s)
Bases de Datos Farmacéuticas , Aprendizaje Profundo , Evaluación Preclínica de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Ligandos , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo , Interfaz Usuario-Computador
19.
J Clin Invest ; 129(4): 1551-1565, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30694219

RESUMEN

Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand-receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and antitumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells coengineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior antitumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.


Asunto(s)
Traslado Adoptivo , Ingeniería Genética , Neoplasias Experimentales/terapia , Receptores Quiméricos de Antígenos , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Animales , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Transducción de Señal/genética , Microambiente Tumoral/genética , Receptor fas/genética , Receptor fas/inmunología
20.
Trends Mol Med ; 24(7): 642-653, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880309

RESUMEN

Originally discovered as an inducer of apoptosis, the TNF-family receptor Fas (CD95, APO-1, TNFRSF6) has more recently been found to have functions beyond cell death, including T cell co-stimulation and promoting terminal differentiation of CD4+ and CD8+ T cells. Other TNF family members also discovered as apoptosis inducers, such as TRAIL (APO-2L, TNFSF10), can promote inflammation through caspase-8. Surprisingly, non-apoptotic signaling through Fas can protect from the autoimmunity seen in Fas deficiency independently from the cell death inducing functions of the receptor. Non-apoptotic Fas signaling can induce tumor cell growth and migration, and impair the efficacy of T cell adoptive immunotherapy. Blocking of non-apoptotic functions of these receptors may be a novel strategy to regulate autoimmunity and inflammation, and enhance antitumor immunity.


Asunto(s)
Autoinmunidad/fisiología , Muerte Celular/fisiología , Citocinas/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...