Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomedicines ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38255319

RESUMEN

Hydrocephalus is characterized by enlargement of the cerebral ventricles, accompanied by distortion of the periventricular tissue. Patients with hydrocephalus usually experience urinary impairments. Although the underlying etiology is not fully described, the effects of hydrocephalus in the neuronal network responsible for the control of urination, which involves periventricular areas, including the periaqueductal gray (PAG) and the noradrenergic locus coeruleus (LC). In this study, we aimed to investigate the mechanisms behind urinary dysfunction in rats with kaolin-induced hydrocephalus. For that purpose, we used a validated model of hydrocephalus-the rat injected with kaolin in the cisterna magna-also presents urinary impairments in order to investigate the putative involvement of noradrenergic control from the brain to the spinal cord Onuf's nucleus, a key area in the motor control of micturition. We first evaluated bladder contraction capacity using cystometry. Since our previous characterization of the LC in hydrocephalic animals showed increased levels of noradrenaline, we then evaluated the noradrenergic innervation of the spinal cord's Onuf's nucleus by measuring levels of dopamine ß-hydroxylase (DBH). We also evaluated the expression of the c-Fos protooncogene, the most widely used marker of neuronal activation, in the ventrolateral PAG (vlPAG), an area that plays a major role in the control of urination by its indirect control of the LC via pontine micturition center. Hydrocephalic rats showed an increased frequency of bladder contractions and lower minimum pressure. These animals also presented increased DBH levels at the Onuf´s nucleus, along with decreased c-Fos expression in the vlPAG. The present findings suggest that impairments in urinary function during hydrocephalus may be due to alterations in descending noradrenergic modulation. We propose that the effects of hydrocephalus in the decrease of vlPAG neuronal activation lead to a decrease in the control over the LC. The increased availability of noradrenaline production at the LC probably causes an exaggerated micturition reflex due to the increased innervation of the Onuf´s nucleus, accounting for the urinary impairments detected in hydrocephalic animals. The results of the study provide new insights into the neuronal underlying mechanisms of urinary dysfunction in hydrocephalus. Further research is needed to fully evaluate the translational perspectives of the current findings.

2.
Neurourol Urodyn ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876314

RESUMEN

INTRODUCTION: Inflammation and neuronal hypersensitivity are reactive protective mechanisms after urothelial injury. In lower urinary tract dysfunctions (LUTD), such as urinary tract infection (UTI), bladder pain syndrome with interstitial cystitis (BPS/IC) and neurogenic LUTD after spinal cord injury (SCI), chronic inflammation can develop. It is unclear how the protective reactionary inflammation escalates into chronic disease in some patients. METHODS: During its 2023 meeting in Bristol, the International Consultation on Incontinence-Research Society (ICI-RS) reviewed the urothelial and inflammatory changes after UTI, BPS/IC and SCI. Potential factors contributing to the evolution into chronic disease were explored in a think-tank. RESULTS: Five topics were discussed. (1) Visceral fat metabolism participates in the systemic pro-inflammatory effect of noradrenalin in BPS/IC and SCI. Sympathetic nervous system-adipocyte-bladder crosstalk needs further investigation. (2) Sympathetic hyperactivity also potentiates immune depression in SCI and needs to be investigated in BPS/IC. Gabapentin and tumor necrosis factor-α are promising research targets. (3) The exact peripheral neurons involved in the integrative protective unit formed by nervous and immune systems need to be further identified. (4) Neurotransmitter changes in SCI and BPS/IC: Neurotransmitter crosstalk needs to be considered in identifying new therapeutic targets. (5) The change from eubiosis to dysbiosis in SCI can contribute to UTI susceptibility and needs to be unraveled. CONCLUSIONS: The think-tank discussed whether visceral fat metabolism, immune depression through sympathetic hyperactivity, peripheral nerves and neurotransmitter crosstalk, and the change in microbiome could provide explanations in the heterogenic development of chronic inflammation in LUTD. High-priority research questions were identified.

3.
Neural Regen Res ; 18(12): 2573-2581, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449592

RESUMEN

Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.

4.
Rev Neurosci ; 34(8): 933-950, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490300

RESUMEN

In recent decade microglia have been found to have a central role in the development of chronic neuropathic pain after injury to the peripheral nervous system. It is widely accepted that peripheral nerve injury triggers microglial activation in the spinal cord, which contributes to heightened pain sensation and eventually chronic pain states. The contribution of microglia to chronic pain arising after injury to the central nervous system, such as spinal cord injury (SCI), has been less studied, but there is evidence supporting microglial contribution to central neuropathic pain. In this systematic review, we focused on post-SCI microglial activation and how it is linked to emergence and maintenance of chronic neuropathic pain arising after SCI. We found that the number of studies using animal SCI models addressing microglial activity is still small, compared with the ones using peripheral nerve injury models. We have collected 20 studies for full inclusion in this review. Many mechanisms and cellular interactions are yet to be fully understood, although several studies report an increase of density and activity of microglia in the spinal cord, both in the vicinity of the injury and in the spared spinal tissue, as well as in the brain. Changes in microglial activity come with several molecular changes, including expression of receptors and activation of signalling pathways. As with peripheral neuropathic pain, microglia seem to be important players and might become a therapeutic target in the future.


Asunto(s)
Dolor Crónico , Neuralgia , Traumatismos de los Nervios Periféricos , Traumatismos de la Médula Espinal , Animales , Humanos , Microglía/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Neuralgia/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo
5.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902095

RESUMEN

The use of neuraxial procedures, such as spinal and epidural anaesthesia, has been linked to some possible complications. In addition, spinal cord injuries due to anaesthetic practice (Anaes-SCI) are rare events but remain a significant concern for many patients undergoing surgery. This systematic review aimed to identify high-risk patients summarise the causes, consequences, and management/recommendations of SCI due to neuraxial techniques in anaesthesia. A comprehensive search of the literature was conducted in accordance with Cochrane recommendations, and inclusion criteria were applied to identify relevant studies. From the 384 studies initially screened, 31 were critically appraised, and the data were extracted and analysed. The results of this review suggest that the main risk factors reported were extremes of age, obesity, and diabetes. Anaes-SCI was reported as a consequence of hematoma, trauma, abscess, ischemia, and infarction, among others. As a result, mainly motor deficits, sensory loss, and pain were reported. Many authors reported delayed treatments to resolve Anaes-SCI. Despite the potential complications, neuraxial techniques are still one of the best options for opioid-sparing pain prevention and management, reducing patients' morbidity, improving outcomes, reducing the length of hospital stay, and pain chronification, with a consequent economic benefit. The main findings of this review highlight the importance of careful patient management and close monitoring during neuraxial anaesthesia procedures to minimise the risk of spinal cord injury and complications.


Asunto(s)
Anestesia Epidural , Anestesia Raquidea , Traumatismos de la Médula Espinal , Humanos , Anestesia Raquidea/efectos adversos , Anestesia Epidural/efectos adversos , Anestesia Epidural/métodos , Traumatismos de la Médula Espinal/etiología , Dolor/etiología
6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834694

RESUMEN

Neurogenic detrusor overactivity (NDO) is a severe lower urinary tract disorder, characterized by urinary urgency, retention, and incontinence, as a result of a neurologic lesion that results in damage in neuronal pathways controlling micturition. The purpose of this review is to provide a comprehensive framework of the currently used animal models for the investigation of this disorder, focusing on the molecular mechanisms of NDO. An electronic search was performed with PubMed and Scopus for literature describing animal models of NDO used in the last 10 years. The search retrieved 648 articles, of which reviews and non-original articles were excluded. After careful selection, 51 studies were included for analysis. Spinal cord injury (SCI) was the most frequently used model to study NDO, followed by animal models of neurodegenerative disorders, meningomyelocele, and stroke. Rats were the most commonly used animal, particularly females. Most studies evaluated bladder function through urodynamic methods, with awake cystometry being particularly preferred. Several molecular mechanisms have been identified, including changes in inflammatory processes, regulation of cell survival, and neuronal receptors. In the NDO bladder, inflammatory markers, apoptosis-related factors, and ischemia- and fibrosis-related molecules were found to be upregulated. Purinergic, cholinergic, and adrenergic receptors were downregulated, as most neuronal markers. In neuronal tissue, neurotrophic factors, apoptosis-related factors, and ischemia-associated molecules are increased, as well as markers of microglial and astrocytes at lesion sites. Animal models of NDO have been crucial for understanding the pathophysiology of lower urinary tract (LUT) dysfunction. Despite the heterogeneity of animal models for NDO onset, most studies rely on traumatic SCI models rather than other NDO-driven pathologies, which may result in some issues when translating pre-clinical observations to clinical settings other than SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Vejiga Urinaria Hiperactiva , Incontinencia Urinaria , Femenino , Ratas , Animales , Vejiga Urinaria , Modelos Animales , Urodinámica
7.
Rev Neurosci ; 34(1): 75-84, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35792932

RESUMEN

Pain is a complex experience, encompassing physiological and psychological components. Amongst the different types of pain, neuropathic pain, resulting from injuries to the peripheral or central nervous system, still constitutes a challenge for researchers and clinicians. Nerve growth factor (NGF) is currently regarded as a key contributor and may serve as a therapeutic target in many types of pain, likely including neuropathic pain. Here, we reviewed the role of NGF in neuropathic pain of peripheral and central origin, also addressing its potential use as a pharmacological target to better help patients dealing with this condition that severely impacts the everyday life. For this, we conducted a search in the databases PubMed and Scopus. Our search resulted in 1103 articles (458 in PubMed and 645 in Scopus). Only articles related to the involvement of NGF in pain or articles that approached its potential use as a target in treatment of pain symptoms were included. Duplicates were eliminated and 274 articles were excluded. After careful analysis, 23 articles were selected for review. Original articles studying the role of NGF in pathology as well as its modulation as a possible therapeutic target were included. We found that NGF is widely regarded as a key player in neuropathic pain and seen as a putative therapeutic target. However, evidence obtained from years of clinical trials highlights the toxic adverse effects of anti-NGF therapeutics, precluding its use in clinical context. Further studies are, thus, needed to improve treatment of chronic neuropathic pain.


Asunto(s)
Factor de Crecimiento Nervioso , Neuralgia , Animales , Humanos , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Modelos Animales de Enfermedad , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo
8.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555592

RESUMEN

Traumatic spinal cord injury (SCI) results in the time-dependent development of urinary impairment due to neurogenic detrusor overactivity (NDO) and detrusor-sphincter-dyssynergia (DSD). This is known to be accompanied by massive changes in the bladder wall. It is presently less clear if the urethra wall also undergoes remodelling. To investigate this issue, female rats were submitted to complete spinal transection at the T8/T9 level and left to recover for 1 week and 4 weeks. To confirm the presence of SCI-induced NDO, bladder function was assessed by cystometry under urethane anesthesia before euthanasia. Spinal intact animals were used as controls. Urethras were collected and processed for further analysis. Following thoracic SCI, time-dependent changes in the urethra wall were observed. Histological assessment revealed marked urethral epithelium reorganization in response to SCI, as evidenced by an increase in epithelial thickness. At the muscular layer, SCI resulted in strong atrophy of the smooth muscle present in the urethral sphincter. Innervation was also affected, as evidenced by a pronounced decrease in the expression of markers of general innervation, particularly those present in sensory and sympathetic nerve fibres. The present data show an evident impact of SCI on the urethra, with significant histological rearrangement, accompanied by sensory and sympathetic denervation. It is likely that these changes will affect urethral function and contribute to SCI-induced urinary dysfunction, and they deserve further investigation.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Vejiga Urinaria Hiperactiva , Ratas , Femenino , Animales , Uretra , Vejiga Urinaria/inervación , Vejiga Urinaria Hiperactiva/etiología , Traumatismos de la Médula Espinal/complicaciones , Músculo Liso , Vejiga Urinaria Neurogénica/complicaciones
9.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955811

RESUMEN

Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI. Here, we confirmed lumbosacral upregulation of the growth-associated protein GAP43 in SCI animals with bladder dysfunction, indicating the occurrence of axonal sprouting. Neurocan and Phosphacan (CSPGs), as well as Nogo-A (MAI), at the same spinal segments were upregulated 7 days post injury (dpi) but returned to baseline values 28 dpi. In turn, qPCR analysis of the mRNA levels for receptors of those repulsive molecules in dorsal root ganglia (DRG) neurons showed a time-dependent decrease in receptor expression. In vitro assays with DRG neurons from SCI rats demonstrated that exposure to high levels of NGF downregulated the expression of some, but not all, receptors for those regulators of axonal growth. The present results, therefore, show significant molecular changes at the lumbosacral cord and DRGs after thoracic lesion, likely critically involved in neuroplastic events leading to urinary impairment.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria Hiperactiva , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Ganglios Espinales/metabolismo , Proteínas Nogo/metabolismo , Calidad de Vida , Ratas , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Vejiga Urinaria Hiperactiva/etiología , Vejiga Urinaria Hiperactiva/metabolismo
10.
Curr Neuropharmacol ; 17(11): 1021-1038, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31204623

RESUMEN

Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Colon/metabolismo , Genitales/metabolismo , Factor de Crecimiento Nervioso , Vejiga Urinaria/metabolismo , Dolor Visceral/metabolismo , Animales , Humanos , Dolor Visceral/fisiopatología
11.
Neurourol Urodyn ; 37(8): 2389-2397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29664149

RESUMEN

AIM: To study the contribution of urethral serotonin for the urethro-vesical crosstalk METHODS: Urethane-anesthetized female rats and TPH1-/- mice underwent isovolumetric or urethral-opened cystometries during intravesical or intraurethral infusion of saline or serotonin solutions. Human and rat bladders and urethrae were immunoreacted against serotonin and neuronal markers. Serotonin concentration and TPH1 mRNA were determined in rat tissue by HPLC and qPCR. RESULTS: In rats, under isovolumetric conditions, intraurethral serotonin infusion, but not saline, evoked bladder contractions. This was abolished by urethral anesthesia and by treatment with serotonin receptor antagonists. Serotonin infusion into the bladder had no effect. Under urethral-opened conditions, serotonin infusion reduced the frequency and increased the amplitude of reflex voiding contractions, compared to saline infusion. TPH1-/- mice, under urethral-opened conditions, exhibited increased frequency and reduced amplitude of voiding contractions compared to WT. Serotonin concentration and TPH1 mRNA expression were higher in the urethra than in the bladder. Cells 5-HT+ were found in the human and rat urethral epithelium, close to a sub-epithelial network of cholinergic and sensory fibers, but not in the bladder. CONCLUSIONS: Serotonin, produced and released by urethral cells activates an urethro-vesical pathway that enhances bladder reflex contractions.


Asunto(s)
Serotonina/fisiología , Uretra/fisiología , Vejiga Urinaria/fisiología , Adulto , Anestesia , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Wistar , Reflejo/efectos de los fármacos , Serotonina/metabolismo , Serotonina/farmacología , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/fisiología , Uretra/inervación , Uretra/metabolismo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/inervación , Micción/efectos de los fármacos
12.
Exp Neurol ; 285(Pt B): 159-166, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27235935

RESUMEN

Spinal cord injury (SCI) often leads to neurogenic detrusor overactivity (NDO) due to sprouting of sensory afferents on the lumbosacral spinal cord. NDO is characterized by high frequency of voiding contractions and increased intravesical pressure that may lead to urinary incontinence. The latter has been described as one of the consequences of SCI that mostly decreases quality of life. Bladder wall injections of botulinum toxin A (Onabot/A) are an effective option to manage NDO. The toxin strongly impairs parasympathetic and sensory fibres coursing the bladder wall. However the robust parasympathetic inhibition may inhibit voiding contractions and cause urinary retention in patients that retain voluntary voiding. Here, we hypothesised that by restricting the toxin activity to sensory fibres we can improve NDO without impairing voiding contractions. In the present work, we assessed the effect of Onabot/A on sensory neurons in chronic (4weeks) SCI rats by injecting the toxin intrathecally (IT), at lumbosacral spinal cord level. This route of administration was shown before to have an effect on bladder pain and contractility in an animal model of bladder inflammation. We found that IT Onabot/A led to a significant reduction in the frequency of expulsive contractions and a normalization of bladder basal pressure while maintaining voiding contractions of normal amplitude. Cleavage of SNAP-25 protein occurred mainly at the dorsal horn regions where most of the bladder afferents end. Cleaved SNAP-25 was not detected in motor or preganglionic parasympathetic neurons. A significant decrease in CGRP expression, a peptide exclusively present in sensory fibres in the spinal cord, occurred at the L5/L6 segments and associated dorsal root ganglia (DRG) after Onabot/A injection in SCI animals. Onabot/A strongly increased the expression of ATF3, a marker of neuronal stress, in L5/L6 DRG neurons. Taken together, our results suggest that IT Onabot/A has a predominant effect on bladder sensory fibres, and that such effect is enough to control NDO following chronic SCI. The mechanism of action of Onabot/A includes not only the cleavage of SNAP-25 in sensory terminals but also impairment of basic cellular machinery in the cell body of sensory neurons.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Fármacos Neuromusculares/administración & dosificación , Células Receptoras Sensoriales/patología , Traumatismos de la Médula Espinal/complicaciones , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología , Factor de Transcripción Activador 3/metabolismo , Análisis de Varianza , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Femenino , Inyecciones Espinales , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Traumatismos de la Médula Espinal/patología , Proteína 25 Asociada a Sinaptosomas/metabolismo
13.
J Neurosci ; 35(5): 2146-60, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653370

RESUMEN

Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vejiga Urinaria Neurogénica/metabolismo , Animales , Axones/metabolismo , Axones/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Femenino , Regeneración Nerviosa , Ratas , Ratas Wistar , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/fisiopatología
14.
Adv Drug Deliv Rev ; 82-83: 153-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25446137

RESUMEN

During the acute phase of SCI, the extension and residual neurological deficits that will persist after the waning of the spinal shock period are difficult to estimate on clinical grounds. Therefore, objective biomarkers able to estimate the extension of the lesion and the degree of neurological recovery are of great importance. Research has been focused on the detection of structural neuronal and glial proteins that leak from damaged cells, inflammatory proteins recruited to remove necrotic debris and more accurate neuroimaging methods that are able to discriminate the extension and functional consequences of the SCI. Urinary biomarkers are also being investigated to estimate functional changes that typically affect bladder function following SCI which can endanger patient's life in the long run. Future studies are needed to precisely characterize the composition and function of the glial scar that appears in the area of SCI and repeals axonal growth, therefore preventing axonal rewiring.


Asunto(s)
Mediadores de Inflamación/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Enfermedades de la Vejiga Urinaria/etiología , Enfermedades de la Vejiga Urinaria/fisiopatología , Animales , Biomarcadores , Humanos , Neuroimagen/métodos , Traumatismos de la Médula Espinal/patología , Enfermedades de la Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/patología
15.
Neurourol Urodyn ; 33(1): 39-45, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23775873

RESUMEN

AIMS: Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS: Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS: Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS: Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Enfermedades de la Vejiga Urinaria/metabolismo , Vejiga Urinaria/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Pronóstico , Células Receptoras Sensoriales/metabolismo , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiopatología , Enfermedades de la Vejiga Urinaria/fisiopatología , Enfermedades de la Vejiga Urinaria/terapia , Urotelio/metabolismo
16.
Adv Urol ; 2011: 382431, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687625

RESUMEN

Overactive bladder syndrome (OAB) is a highly prevalent urinary dysfunction, with considerable economic and human costs. Clinical diagnosis of OAB is still based on subjective symptoms. A new accurate, objective and noninvasive test to diagnose OAB and assess therapeutic outcome is lacking. Recent studies in lower urinary tract (LUT) dysfunctions, particularly in OAB patients, indicate that urinary proteins (neurotrophins, prostaglandins, and cytokines), serum C reactive protein, and detrusor wall thickness are altered, and such changes could be used as biomarkers of the disease. Nowadays, increasing emphasis has been given to the role of urinary neurotrophins, namely nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF), as key players in some urinary dysfunctions. Although recently considered to be a bladder dysfunction biomarker, urinary NGF presents low sensitivity and specificity. Preliminary results suggest that BDNF may serve as a more efficient biomarker. Even though we have to wait for future studies to confirm the potential role of NGF and BDNF as OAB biomarkers, it is already clear that neurotrophins will contribute to elucidate the physiopathological basis of OAB. Herein are reviewed the latest advances in this new and exciting field, the detection and clinical application of emerging OAB biomarkers.

17.
ScientificWorldJournal ; 11: 214-34, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21258763

RESUMEN

Control of the lower urinary tract (LUT) requires complex neuronal circuits that involve elements located at the peripheral nervous system and at different levels of the central nervous system. Spinal cord injury (SCI) interrupts these neuronal circuits and jeopardizes the voluntary control of bladder function. In most cases, SCI results in a period of bladder areflexia, followed by the emergence of neurogenic detrusor overactivity (NDO). Only recently, researchers have started to have a clearer vision of the mechanisms of SCI-induced changes affecting LUT control. For example, changes in the urothelium have recently been described and proposed to play a role in NDO. As such, a better understanding of NDO has generated new opportunities to investigate novel therapeutic approaches for NDO. In the present paper, we aim to update recent data concerning SCI-induced LUT dysfunction and therapeutic approaches commonly used to deal with NDO. We make a brief description of LUT control and changes occurring after SCI, and refer to new therapeutic options, including vanniloids and botulinum toxin. Finally, we discuss mechanisms of spinal cord repair, an interesting and very active area of investigation that has obtained some promising results in the recovery of LUT control.


Asunto(s)
Traumatismos de la Médula Espinal/fisiopatología , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/fisiopatología , Animales , Toxinas Botulínicas/uso terapéutico , Humanos , Traumatismos de la Médula Espinal/complicaciones , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología , Vejiga Urinaria Hiperactiva/fisiopatología , Sistema Urinario/efectos de los fármacos , Sistema Urinario/fisiopatología
18.
Curr Neuropharmacol ; 9(4): 522, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22654712
19.
Curr Neuropharmacol ; 9(4): 553-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22654715

RESUMEN

The lower urinary tract (LUT) comprises a storage unit, the urinary bladder, and an outlet, the urethra. The coordination between the two structures is tightly controlled by the nervous system and, therefore, LUT function is highly susceptible to injuries to the neuronal pathways involved in micturition control. These injuries may include lesions to the spinal cord or to nerve fibres and result in micturition dysfunction. A common trait of micturition pathologies, irrespective of its origin, is an upregulation in synthesis and secretion of neurotrophins, most notably Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF). These neurotrophins are produced by neuronal and non-neuronal cells and exert their effects upon binding to their high-affinity receptors abundantly expressed in the neuronal circuits regulating LUT function. In addition, NGF and BDNF are present in detectable amounts in the urine of patients suffering from various LUT pathologies, suggesting that analysis of urinary NGF and BDNF may serve as likely biomarkers to be studied in tandem with other factors when diagnosing patients. Studies with experimental models of bladder dysfunction using antagonists of NGF and BDNF receptors as well as scavenging agents suggest that those NTs may be key elements in the pathophysiology of bladder dysfunctions. In addition, available data indicates that NGF and BDNF might constitute future targets for designing new drugs for better treatment of bladder dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...