Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; : e0035624, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191390

RESUMEN

In this study, we employed short- and long-read sequencing technologies to delineate the transcriptional architecture of the human monkeypox virus and to identify key regulatory elements that govern its gene expression. Specifically, we conducted a transcriptomic analysis to annotate the transcription start sites (TSSs) and transcription end sites (TESs) of the virus by utilizing Cap Analysis of gene expression sequencing on the Illumina platform and direct RNA sequencing on the Oxford Nanopore technology device. Our investigations uncovered significant complexity in the use of alternative TSSs and TESs in viral genes. In this research, we also detected the promoter elements and poly(A) signals associated with the viral genes. Additionally, we identified novel genes in both the left and right variable regions of the viral genome.IMPORTANCEGenerally, gaining insight into how the transcription of a virus is regulated offers insights into the key mechanisms that control its life cycle. The recent outbreak of the human monkeypox virus has underscored the necessity of understanding the basic biology of its causative agent. Our results are pivotal for constructing a comprehensive transcriptomic atlas of the human monkeypox virus, providing valuable resources for future studies.

2.
Sci Rep ; 13(1): 16395, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773348

RESUMEN

Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.


Asunto(s)
Herpesviridae , Origen de Réplica , Origen de Réplica/genética , Herpesviridae/genética , Transcriptoma , Perfilación de la Expresión Génica , Genómica
3.
Heliyon ; 9(7): e17716, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449092

RESUMEN

This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.

4.
Sci Data ; 10(1): 262, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160911

RESUMEN

The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.


Asunto(s)
Mpox , Secuenciación de Nanoporos , Humanos , ADN Complementario , Perfilación de la Expresión Génica , Transcriptoma
5.
Gigascience ; 112022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251275

RESUMEN

BACKGROUND: Recent studies have disclosed the genome, transcriptome, and epigenetic compositions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the effect of viral infection on gene expression of the host cells. It has been demonstrated that, besides the major canonical transcripts, the viral genome also codes for noncanonical RNA molecules. While the structural characterizations have revealed a detailed transcriptomic architecture of the virus, the kinetic studies provided poor and often misleading results on the dynamics of both the viral and host transcripts due to the low temporal resolution of the infection event and the low virus/cell ratio (multiplicity of infection [MOI] = 0.1) applied for the infection. It has never been tested whether the alteration in the host gene expressions is caused by aging of the cells or by the viral infection. FINDINGS: In this study, we used Oxford Nanopore's direct cDNA and direct RNA sequencing methods for the generation of a high-coverage, high temporal resolution transcriptomic dataset of SARS-CoV-2 and of the primate host cells, using a high infection titer (MOI = 5). Sixteen sampling time points ranging from 1 to 96 hours with a varying time resolution and 3 biological replicates were used in the experiment. In addition, for each infected sample, corresponding noninfected samples were employed. The raw reads were mapped to the viral and to the host reference genomes, resulting in 49,661,499 mapped reads (54,62 Gbs). The genome of the viral isolate was also sequenced and phylogenetically classified. CONCLUSIONS: This dataset can serve as a valuable resource for profiling the SARS-CoV-2 transcriptome dynamics, the virus-host interactions, and the RNA base modifications. Comparison of expression profiles of the host gene in the virally infected and in noninfected cells at different time points allows making a distinction between the effect of the aging of cells in culture and the viral infection. These data can provide useful information for potential novel gene annotations and can also be used for studying the currently available bioinformatics pipelines.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Animales , COVID-19/genética , ADN Complementario/genética , Cinética , ARN , SARS-CoV-2/genética
6.
Data Brief ; 43: 108386, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789906

RESUMEN

Long-read sequencing (LRS) approaches shed new light on the complexity of viral (Kakuk et al., 2021 [1]; Boldogkoi et al., 2019 [2]; Depledge et a., 2019 [3]), bacterial (Yan et al., 2018 [4]) and eukaryotic (Tilgner et al., 2014 [5]) transcriptomes. Emerging RNA viruses are zoonotic (Woolhouse et al., 2016 [6]) and create public health problems, e.g. influenza pandemic caused by H1N1 virus in (Fraser et al., 2009 [7]), as well as the current SARS-CoV-2 pandemic (Kim et al., 2020 [8]). In this study, we carried out nanopore sequencing for generating transcriptomic data valuable for structural and kinetic profiling of six important human pathogen RNA viruses, the H1N1 subtype of Influenza A virus (IVA), the Zika virus (ZIKV), the West Nile virus (WNV), the Crimean-Congo hemorrhagic fever virus (CCHFV), the Coxsackievirus [group B serotype 5 (CVB5)] and the Vesicular stomatitis Indiana virus (VSIV), and the response of host cells upon viral infection. The raw sequencing data were filtered during basecalling and only high quality reads (Qscore ≥ 7) were mapped to the appropriate viral and host genomes. Length distribution of sequencing reads were assessed and statistics of data were plotted by the ReadStat.4 python script. The datasets can be used to profile the transcriptomic landscape of RNA viruses, provide information for novel gene annotations, can serve as resource for studying the virus-host interactions, and for the analysis of RNA base modifications. These datasets can be used to compare the different sequencing techniques, library preparation approaches, bioinformatics pipelines, and to analyze the RNA profiles of viruses with small RNA genomes.

7.
Viruses ; 14(6)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746760

RESUMEN

In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate-early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.


Asunto(s)
Herpesvirus Bovino 1 , Secuenciación de Nanoporos , Perfilación de la Expresión Génica/métodos , Herpesvirus Bovino 1/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma
8.
Virol J ; 19(1): 7, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991630

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read-sequencing and Pacific Biosciences RS II-based long-read sequencing technologies. Since the various sequencing methods have distinct strengths and limitations, the use of multiplatform approaches have proven to be valuable. The aim of this study is to provide a more complete picture on the transcriptomic architecture of EBV. METHODS: In this work, we apply the Oxford Nanopore Technologies MinION (long-read sequencing) platform for the generation of novel transcriptomic data, and integrate these with other's data generated by another LRS approach, Pacific BioSciences RSII sequencing and Illumina CAGE-Seq and Poly(A)-Seq approaches. Both amplified and non-amplified cDNA sequencings were applied for the generation of sequencing reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory. RESULTS: This study detected novel genes embedded into longer host genes containing 5'-truncated in-frame open reading frames, which potentially encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel replication-origin-associated transcripts. Additionally, novel mono- and multigenic transcripts were identified. An intricate meshwork of transcriptional overlaps was revealed. CONCLUSIONS: An integrative approach applying multi-technique sequencing technologies is suitable for reliable identification of complex transcriptomes because each techniques has different advantages and limitations, and the they can be used for the validation of the results obtained by a particular approach.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Transcriptoma , Infecciones por Virus de Epstein-Barr/genética , Perfilación de la Expresión Génica , Herpesvirus Humano 4/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Sistemas de Lectura Abierta
9.
Sci Rep ; 12(1): 1291, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079129

RESUMEN

In this study, two long-read sequencing (LRS) techniques, MinION from Oxford Nanopore Technologies and Sequel from the Pacific Biosciences, were used for the transcriptional characterization of a prototype baculovirus, Autographa californica multiple nucleopolyhedrovirus. LRS is able to read full-length RNA molecules, and thereby distinguish between transcript isoforms, mono- and polycistronic RNAs, and overlapping transcripts. Altogether, we detected 875 transcript species, of which 759 were novel and 116 were annotated previously. These RNA molecules include 41 novel putative protein coding transcripts [each containing 5'-truncated in-frame open reading frames (ORFs), 14 monocistronic transcripts, 99 polygenic RNAs, 101 non-coding RNAs, and 504 untranslated region isoforms. This work also identified novel replication origin-associated transcripts, upstream ORFs, cis-regulatory sequences and poly(A) sites. We also detected RNA methylation in 99 viral genes and RNA hyper-editing in the longer 5'-UTR transcript isoform of the canonical ORF 19 transcript.


Asunto(s)
Baculoviridae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Metilación , Nucleopoliedrovirus/genética , Sistemas de Lectura Abierta , ARN Viral , TATA Box , Regiones no Traducidas
10.
Front Bioeng Biotechnol ; 9: 709462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660548

RESUMEN

The recent coronavirus pandemic pointed out the vulnerability of humanity to new emerging infectious diseases. Experts warn that future pandemics may emerge more frequently with greater devastating effects on population health and the world economy. Although viruses are unable to propagate on lifeless surfaces, they can retain their infectivity and spread further on contact with these surfaces. The objective of our study is to analyze photoreactive composite films that exert antiviral effects upon illumination. Reactive plasmonic titanium dioxide-based polymeric nanocomposite film was prepared with a thickness of 1-1.5 µm, which produces reactive oxygen species (ROS) under visible light irradiation (λ ≥ 435 nm). These species are suitable for photooxidation of adsorbed organic molecules (e.g., benzoic acid) on the nanocomposite surface. Moreover, high molecular weight proteins are also degraded or partially oxidized in this process on the composite surface. Since the Ag0-TiO2/polymer composite film used showed excellent reactivity in the formation of OH• radicals, the photocatalytic effect on high molecular weight (M = ∼66.000 Da) bovine serum albumin (BSA) protein was investigated. Given that changes in the structure of the protein were observed upon exposure to light, we assumed virucidal effect of the illuminated photoreactive composite film. We tested this hypothesis using an airborne-transmitted herpesvirus. As a result, we obtained a drastic decrease in infection capability of the virus on the photoreactive surface compared to the control surface.

11.
Pathogens ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578228

RESUMEN

Vesicular stomatitis Indiana virus (VSIV) of genus Vesiculovirus, species IndianaVesiculovirus (formerly as Vesicular stomatitis virus, VSV) causes a disease in livestock that is very similar to the foot and mouth disease, thereby an outbreak may lead to significant economic loss. Long-read sequencing (LRS) -based approaches already reveal a hidden complexity of the transcriptomes in several viruses. This technique has been utilized for the sequencing of the VSIV genome, but our study is the first for the application of this technique for the profiling of the VSIV transcriptome. Since LRS is able to sequence full-length RNA molecules, it thereby provides more accurate annotation of the transcriptomes than the traditional short-read sequencing methods. The objectives of this study were to assemble the complete transcriptome of using nanopore sequencing, to ascertain cell-type specificity and dynamics of viral gene expression, and to evaluate host gene expression changes induced by the viral infection. We carried out a time-course analysis of VSIV gene expression in human glioblastoma and primate fibroblast cell lines using a nanopore-based LRS approach and applied both amplified and direct cDNA sequencing (as well as cap-selection) for a fraction of samples. Our investigations revealed that, although the VSIV genome is simple, it generates a relatively complex transcriptomic architecture. In this study, we also demonstrated that VSIV transcripts vary in structure and exhibit differential gene expression patterns in the two examined cell types.

12.
Pathogens ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451383

RESUMEN

Viral transcriptomes that are determined using first- and second-generation sequencing techniques are incomplete. Due to the short read length, these methods are inefficient or fail to distinguish between transcript isoforms, polycistronic RNAs, and transcriptional overlaps and readthroughs. Additionally, these approaches are insensitive for the identification of splice and transcriptional start sites (TSSs) and, in most cases, transcriptional end sites (TESs), especially in transcript isoforms with varying transcript ends, and in multi-spliced transcripts. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. Although vaccinia virus (VACV) does not produce spliced RNAs, its transcriptome has a high diversity of TSSs and TESs, and a high degree of polycistronism that leads to enormous complexity. We applied single-molecule, real-time, and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of VACV gene expression.

13.
Sci Rep ; 11(1): 14487, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262076

RESUMEN

Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.


Asunto(s)
Citomegalovirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Citomegalovirus/aislamiento & purificación , ADN Complementario , Genes Virales , Humanos , Sistemas de Lectura Abierta , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos
14.
Sci Rep ; 11(1): 14219, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244540

RESUMEN

Third-generation sequencing is able to read full-length transcripts and thus to efficiently identify RNA molecules and transcript isoforms, including transcript length and splice isoforms. In this study, we report the time-course profiling of the effect of bovine alphaherpesvirus type 1 on the gene expression of bovine epithelial cells using direct cDNA sequencing carried out on MinION device of Oxford Nanopore Technologies. These investigations revealed a substantial up- and down-regulatory effect of the virus on several gene networks of the host cells, including those that are associated with antiviral response, as well as with viral transcription and translation. Additionally, we report a large number of novel bovine transcript isoforms identified by nanopore and synthetic long-read sequencing. This study demonstrates that viral infection causes differential expression of host transcript isoforms. We could not detect an increased rate of transcriptional readthroughs as described in another alphaherpesvirus. According to our knowledge, this is the first report on the use of LoopSeq for the analysis of eukaryotic transcriptomes. This is also the first report on the application of nanopore sequencing for the kinetic characterization of cellular transcriptomes. This study also demonstrates the utility of nanopore sequencing for the characterization of dynamic transcriptomes in any organisms.


Asunto(s)
Nanoporos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos
15.
BMC Res Notes ; 14(1): 239, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167576

RESUMEN

OBJECTIVE: In this study, we applied two long-read sequencing (LRS) approaches, including single-molecule real-time and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of host gene expression as a response to Vaccinia virus infection. Transcriptomes determined using short-read sequencing approaches are incomplete because these platforms are inefficient or fail to distinguish between polycistronic RNAs, transcript isoforms, transcriptional start sites, as well as transcriptional readthroughs and overlaps. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. RESULTS: In this work, we identified a number of novel transcripts and transcript isoforms of Chlorocebus sabaeus. Additionally, analysis of the most abundant 768 host transcripts revealed a significant overrepresentation of the class of genes in the "regulation of signaling receptor activity" Gene Ontology annotation as a result of viral infection.


Asunto(s)
Perfilación de la Expresión Génica , Infecciones por Poxviridae , Animales , Chlorocebus aethiops , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética , Transcriptoma
16.
Viruses ; 13(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808073

RESUMEN

African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family. Despite its agricultural importance, little is known about the fundamental molecular mechanisms of this pathogen. Short-read sequencing (SRS) can produce a huge amount of high-precision sequencing reads for transcriptomic profiling, but it is inefficient for comprehensively annotating transcriptomes. Long-read sequencing (LRS) can overcome some of SRS's limitations, but it also has drawbacks, such as low-coverage and high error rate. The limitations of the two approaches can be surmounted by the combined use of these techniques. In this study, we used Illumina SRS and Oxford Nanopore Technologies LRS platforms with multiple library preparation methods (amplified and direct cDNA sequencings and native RNA sequencing) for constructing the ASFV transcriptomic atlas. This work identified many novel transcripts and transcript isoforms and annotated the precise termini of previously described RNAs. This study identified a novel species of ASFV transcripts, the replication origin-associated RNAs. Additionally, we discovered several nested genes embedded into larger canonical genes. In contrast to the current view that the ASFV transcripts are monocistronic, we detected a significant extent of polycistronism. A multifaceted meshwork of transcriptional overlaps was also discovered.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Células Cultivadas , Biblioteca de Genes , Genoma Viral , Macrófagos Alveolares/virología , ARN Viral/genética , Porcinos
18.
Pathogens ; 10(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672563

RESUMEN

In the last couple of years, the implementation of long-read sequencing (LRS) technologies for transcriptome profiling has uncovered an extreme complexity of viral gene expression. In this study, we carried out a systematic analysis on the pseudorabies virus transcriptome by combining our current data obtained by using Pacific Biosciences Sequel and Oxford Nanopore Technologies MinION sequencing with our earlier data generated by other LRS and short-read sequencing techniques. As a result, we identified a number of novel genes, transcripts, and transcript isoforms, including splice and length variants, and also confirmed earlier annotated RNA molecules. One of the major findings of this study is the discovery of a large number of 5'-truncations of larger putative mRNAs being 3'-co-terminal with canonical mRNAs of PRV. A large fraction of these putative RNAs contain in-frame ATGs, which might initiate translation of N-terminally truncated polypeptides. Our analyses indicate that CTO-S, a replication origin-associated RNA molecule is expressed at an extremely high level. This study demonstrates that the PRV transcriptome is much more complex than previously appreciated.

19.
Neurosci Lett ; 744: 135517, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33246028

RESUMEN

It is well established that the adult mammalian pineal body (PB), with the exception of rodents, contains nerve cell bodies. Based on our previous results we have proposed that there is a pinealo-to-retinal neuronal connection in adult hamsters and in prebubertal rats. By the time the animals reached puberty, labeled cells in the PB were not observed in rats. In the present experiment, we provide light and electron microscopic immunohistochemical evidence that the labeled cells in the PB of prepubertal rats are neurons. Pinealocytes cannot transport neurotropic viruses. Virus labeled cells do not show S-antigen immunoreactivity typical for pinealocytes of six-day-old rats. Electron microscopic investigation confirmed the neuronal nature of virus labeled cells. These neurons, similarly to that of hamsters, also establish pinealo-to-retinal connections in prepubertal rats.


Asunto(s)
Herpesvirus Suido 1/metabolismo , Glándula Pineal/química , Glándula Pineal/metabolismo , Neuronas Retinianas/química , Neuronas Retinianas/metabolismo , Maduración Sexual/fisiología , Animales , Animales Recién Nacidos , Transporte Biológico/fisiología , Inmunohistoquímica , Masculino , Microscopía/métodos , Microscopía Electrónica/métodos , Glándula Pineal/ultraestructura , Ratas , Ratas Wistar , Neuronas Retinianas/ultraestructura
20.
Sci Rep ; 10(1): 20496, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235226

RESUMEN

Long-read sequencing (LRS) has become a standard approach for transcriptome analysis in recent years. Bovine alphaherpesvirus 1 (BoHV-1) is an important pathogen of cattle worldwide. This study reports the profiling of the dynamic lytic transcriptome of BoHV-1 using two long-read sequencing (LRS) techniques, the Oxford Nanopore Technologies MinION, and the LoopSeq synthetic LRS methods, using multiple library preparation protocols. In this work, we annotated viral mRNAs and non-coding transcripts, and a large number of transcript isoforms, including transcription start and end sites, as well as splice variants of BoHV-1. Our analysis demonstrated an extremely complex pattern of transcriptional overlaps.


Asunto(s)
Perfilación de la Expresión Génica , Herpesvirus Bovino 1/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética , Empalme Alternativo/genética , Secuencia de Bases , Línea Celular , Regulación Viral de la Expresión Génica , Genoma Viral , Intrones/genética , Cinética , Anotación de Secuencia Molecular , Péptidos/metabolismo , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Sitio de Iniciación de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA