Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cytometry A ; 87(1): 23-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25212523

RESUMEN

Flow cytometry is one of the most widely used methods for the qualitative and quantitative analysis of cell surface expressed proteins by making use of fluorescent specific antibodies. Lacking an antibody validated for flow cytometry, an alternative approach for labeling cell surface receptors is the use of fluorescently tagged ligands. In this study, histamine H4 receptor transfected Chinese hamster ovary cells and murine bone marrow-derived mast cells (mBMMCs) were selected for studying the possibility of staining individual histamine receptors using BODIPY(®) FL histamine and selective antagonists. Flow cytometric measurements and supporting calculations showed that BODIPY FL histamine is suitable tool for quantitating cell surface histamine receptors. The binding, and competitive inhibition of this fluorescent ligand were characterized, which were in good agreement with a semi-empirical model constructed from fundamental protein-binding relationships. Using this method it was shown for the first time that even though mature mBMMCs express H2R and H4R to the same extent, immunoglobulin E sensitization results in H4R upregulation only, while the surface expression of H2R remains unchanged.


Asunto(s)
Células de la Médula Ósea/metabolismo , Compuestos de Boro , Citometría de Flujo/métodos , Colorantes Fluorescentes , Mastocitos/metabolismo , Receptores Acoplados a Proteínas G/análisis , Receptores Histamínicos/análisis , Animales , Unión Competitiva , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Compuestos de Boro/química , Células CHO , Cricetulus , Colorantes Fluorescentes/química , Expresión Génica , Histamina/química , Histamina/metabolismo , Humanos , Inmunoglobulina E/farmacología , Masculino , Mastocitos/citología , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Cultivo Primario de Células , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H2/análisis , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H4 , Transfección
2.
Cell Immunol ; 283(1-2): 38-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23850674

RESUMEN

There is increasing evidence that histamine regulates the immune system via histamine H4 receptors, therefore we sought to investigate the functions of the H4 receptor on mast cells. Mast cells were differentiated from murine bone marrow stem cells, and the expression of mast cell surface markers FcεRI and CD117 were measured using flow cytometry. Real-time qRT-PCR was used to determine the expression of mH4R; as a measure of antigen-dependent degranulation, ß-hexosaminidase release assay was carried out using IgE sensitized mast cells. We determined that the expression kinetics of FcεRI and mH4R can be described with a function that has one maximum value in the time range of the culture's differentiation. Antigen-dependent degranulation of murine bone marrow-derived mast cells could be inhibited by a selective H4 antagonist/inverse agonist only when it was present during the IgE sensitization phase of degranulation. In addition, flow cytometric analysis revealed that the H4 antagonist/inverse agonist also inhibited IgE induced FcεRI upregulation. The inhibition percentage of H4 antagonist on IgE induced FcεRI upregulation was determined to be dependent upon the maturity of the mast cell cultures, and this time-dependency was consistent with the expression kinetics of both mH4R and FcεRI. These results imply that H4R has regulatory roles in FcεRI expression and FcεRI mediated functions in mast cells. In conclusion the present study shows that H4 receptors potentially play a role in IgE induced FcεRI upregulation and in the sensitization phase but not the effector phase of mast cell degranulation.


Asunto(s)
Degranulación de la Célula/inmunología , Mastocitos/metabolismo , Receptores Histamínicos/metabolismo , Receptores de IgE/biosíntesis , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Citometría de Flujo , Inmunoglobulina E/inmunología , Masculino , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Histamínicos/inmunología , Receptores de IgE/inmunología , Regulación hacia Arriba
3.
J Biol Chem ; 283(21): 14524-31, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18337241

RESUMEN

STIM1 has been recently identified as a Ca(2+) sensor in endoplasmic reticulum (ER) and an initiator of the store-operated Ca(2+) entry (SOCE) pathway, but the mechanism of SOCE activation remains controversial. Here we focus on the early ER-delimited steps of the SOCE pathway and demonstrate that STIM1 is critically involved in initiating of production of calcium influx factor (CIF), a diffusible messenger that can deliver the signal from the stores to plasma membrane and activate SOCE. We discovered that CIF production is tightly coupled with STIM1 expression and requires functional integrity of its intraluminal sterile alpha-motif (SAM) domain. We demonstrate that 1) molecular knockdown or overexpression of STIM1 results in corresponding impairment or amplification of CIF production and 2) inherent deficiency in the ER-delimited CIF production and SOCE activation in some cell types can be a result of their deficiency in STIM1 protein; expression of a wild-type STIM1 in such cells was sufficient to fully rescue their ability to produce CIF and SOCE. We found that glycosylation sites in the ER-resident SAM domain of STIM1 are essential for initiation of CIF production. We propose that after STIM1 loses Ca(2+) from EF hand, its intraluminal SAM domain may change conformation, and via glycosylation sites it can interact with and activate CIF-producing machinery. Thus, CIF production appears to be one of the earliest STIM1-dependent events in the ER lumen, and impairment of this process results in impaired SOCE response.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Glicosilación , Fosfolipasas A2 Grupo VI/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Estructura Terciaria de Proteína , Conejos
4.
Channels (Austin) ; 1(4): 246-52, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18711860

RESUMEN

Store-operated channels (SOC) are known to be physiologically activated following agonist-induced IP3 production and depletion of Ca2+ stores. Here we present molecular,biophysical and mechanistic evidence that two ubiquitously expressed plasma membrane channels may be responsible for creating a complex and sometimes controversial SOC image: one being a real SOC encoded by Orai1 and activated exclusively upon depletion of Ca2+ stores (via iPLA2beta -dependent pathway), while the second one is an IP3 receptor-operated channel (IP3ROC) encoded by TRPC1 and activated via its conformational coupling with IP3 receptor. In RBL-2H3 cells endogenously expressing Orai1 and TRPC1, we unmasked and characterized whole-cell current through IP3ROC channels that was hiding behind some familiar fingerprints of ICRAC, a current through the classical Ca2+-selective SOC (CRAC) channels. We discriminated these currents by their molecular identity, selectivity and different requirements for store depletion, IP3, iPLA2beta and conformational coupling to IP3 receptor. New knowledge on the properties and coexistence of Orai1-encoded SOC and TRPC1-encoded IP3ROC, and the use of experimental approaches introduced in this manuscript should help avoid further confusion about these channels, and open new exciting possibilities for their independent studies


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Potenciales de la Membrana , Fosfolipasas A2 Calcio-Independiente/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Canales Catiónicos TRPC/genética , Factores de Tiempo , Transfección
5.
J Biol Chem ; 281(46): 34926-35, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-17003039

RESUMEN

Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2beta and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species) mimics the effects of endogenous CIF and activates iPLA2beta when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2beta prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2beta, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2beta activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2beta, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Fosfolipasas A/metabolismo , Animales , Plaquetas/metabolismo , Línea Celular Tumoral , Fosfolipasas A2 Grupo IV , Fosfolipasas A2 , Ratas
6.
Int J Neuropsychopharmacol ; 9(5): 613-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16259646

RESUMEN

Phosphoglucomutase catalyses the reversible conversion of glucose-6-P and glucose-1-P. Lithium is a potent inhibitor of phosphoglucomutase in vitro, however, it is not known if phosphoglucomutase was significantly inhibited by Li+ in Li+-treated bipolar patients. Here, we demonstrate that phosphoglucomutase inhibition by chronic Li+ treatment causes alterations of glucose-phosphate levels in various tissues of rats. Also, phosphoglucomutase inhibition results in compensatory elevation of phosphoglucomutase activity in rat tissues and in leukocytes isolated from Li+-treated bipolar patients. The increase of uninhibited phosphoglucomutase activity in leukocytes of Li+-treated bipolar patients is due to the increased expression of the PGM1 gene.


Asunto(s)
Antimaníacos/farmacología , Trastorno Bipolar/patología , Leucocitos/efectos de los fármacos , Cloruro de Litio/farmacología , Fosfoglucomutasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Calcio/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Humanos , Cloruro de Litio/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Magnesio/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Miocardio/enzimología , Fosfoglucomutasa/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
7.
Trends Biochem Sci ; 30(7): 378-87, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951181

RESUMEN

The molecular mechanism of the store-operated Ca2+-entry (SOCE) pathway remains one of the most intriguing and long lasting mysteries of Ca2+ signaling. The elusive calcium influx factor (CIF) that is produced upon depletion of Ca2+ stores has attracted growing attention, triggered by new discoveries that filled the gap in the chain of reactions leading to activation of store-operated channels and Ca2+ entry. Ca2+-independent phospholipase A2 emerged as a target of CIF, and a major determinant of the SOCE mechanism. Here, we present our viewpoint on CIF and conformational-coupling models of SOCE from a historical perspective, trying to resolve some of the problem areas, and summarizing our present knowledge on how depletion of intracellular Ca2+ stores signals to plasma membrane channels to open and provide Ca2+ influx that is required for many important physiological functions.


Asunto(s)
Factores Biológicos/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Animales , Humanos , Modelos Biológicos
8.
Orv Hetil ; 146(20): 995-1001, 2005 May 15.
Artículo en Húngaro | MEDLINE | ID: mdl-15945242

RESUMEN

During the mid sixties scientists recognized that tumour cells can be resistant to a variety of chemotherapeutical drugs of different chemical structure simultaneously. They named this phenomenon multidrug resistance (MDR). Following this observation, number of in vitro and in vivo experiments proved that transmembrane proteins of the cell membrane are responsible for the mechanism. Many details of the underlying biochemical mechanisms were explored during the past decade. Nowadays the importance of MDR is well appreciated in different walks of medical science. MDR is an important problem during the treatment of many haematological conditions and solid organ tumors. Also, MDR is an important factor during immunosuppressant therapy of the transplanted patients. In spite of extensive research there are many uncertainties around MDR. This brief review describes the present options in the investigation of MDR. Based upon the MDR genotyping and expression level the likelihood of drug resistance may be predicted with reasonable accuracy. Additional information may be obtained by measuring the P-glycoprotein expression on the cell surface and the outward transport of test molecules from the cells. Although the tests described above provide significant help in predicting MDR or in the confirmation of existing MDR there is no consensus about the laboratory diagnosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/genética , Genes MDR , Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Humanos , Farmacogenética
9.
Am J Physiol Cell Physiol ; 289(1): C58-67, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15703203

RESUMEN

Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ over-accumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p.


Asunto(s)
Calcio/metabolismo , Homeostasis , Litio/farmacología , Fosfoglucomutasa/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Calcio/farmacocinética , ATPasas Transportadoras de Calcio/metabolismo , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/farmacología , Citosol/metabolismo , Metabolismo Energético/efectos de los fármacos , Galactosa/administración & dosificación , Glucosa-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Homeostasis/efectos de los fármacos , Membranas Intracelulares/metabolismo , Magnesio/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Distribución Tisular , Vacuolas/metabolismo
10.
Nat Cell Biol ; 6(2): 113-20, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14730314

RESUMEN

Activation of store-operated channels (SOCs) and capacitative calcium influx are triggered by depletion of intracellular calcium stores. However, the exact molecular mechanism of such communication remains unclear. Recently, we demonstrated that native SOC channels can be activated by calcium influx factor (CIF) that is produced upon depletion of calcium stores, and showed that Ca(2+)-independent phospholipase A(2) (iPLA(2)) has an important role in the store-operated calcium influx pathway. Here, we identify the key plasma-membrane-delimited events that result in activation of SOC channels. We also propose a novel molecular mechanism in which CIF displaces inhibitory calmodulin (CaM) from iPLA(2), resulting in activation of iPLA(2) and generation of lysophospholipids that in turn activate soc channels and capacitative calcium influx. Upon refilling of the stores and termination of CIF production, CaM rebinds to iPLA(2), inhibits it, and the activity of SOC channels and capacitative calcium influx is terminated.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Animales , Factores Biológicos , Calmodulina/metabolismo , Células Cultivadas , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Humanos , Imidazoles/metabolismo , Lisofosfolípidos/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Modelos Biológicos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Fosfolipasas A/metabolismo , Conejos , Transducción de Señal/fisiología , Tapsigargina/metabolismo
11.
J Biol Chem ; 278(14): 11909-15, 2003 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-12547829

RESUMEN

Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.


Asunto(s)
Plaquetas/enzimología , Canales de Calcio/metabolismo , Calcio/metabolismo , Miocitos del Músculo Liso/enzimología , Fosfolipasas A/metabolismo , Animales , Aorta/citología , Plaquetas/citología , Fosfolipasas A2 Grupo VI , Humanos , Células Jurkat , Manganeso/farmacocinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Miocitos del Músculo Liso/citología , Naftalenos/farmacología , Oligonucleótidos Antisentido/farmacología , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/farmacología , Fosfolipasas A/genética , Fosfolipasas A2 , Pironas/farmacología , Conejos , Ratas
12.
Am J Physiol Cell Physiol ; 284(2): C497-505, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12388110

RESUMEN

The coupling mechanism between depletion of Ca(2+) stores in the endoplasmic reticulum and plasma membrane store-operated ion channels is fundamental to Ca(2+) signaling in many cell types and has yet to be completely elucidated. Using Ca(2+) release-activated Ca(2+) (CRAC) channels in RBL-2H3 cells as a model system, we have shown that CRAC channels are maintained in the closed state by an inhibitory factor rather than being opened by the inositol 1,4,5-trisphosphate receptor. This inhibitory role can be fulfilled by the Drosophila protein INAD (inactivation-no after potential D). The action of INAD requires Ca(2+) and can be reversed by a diffusible Ca(2+) influx factor. Thus the coupling between the depletion of Ca(2+) stores and the activation of CRAC channels may involve a mammalian homologue of INAD and a low-molecular-weight, diffusible store-depletion signal.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila , Células Eucariotas/metabolismo , Proteínas del Ojo/metabolismo , Animales , Compuestos de Boro/farmacología , Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Células Eucariotas/efectos de los fármacos , Proteínas del Ojo/genética , Proteínas del Ojo/farmacología , Heparina/farmacología , Receptores de Inositol 1,4,5-Trifosfato , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratas , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA