Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 887: 163999, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37172830

RESUMEN

Waste PVC is scarcely recycled due to its high chlorine content and its use in composite materials, which reduces the applicability of conventional waste treatment methods, including thermal, mechanical and chemical recycling. For this reason, alternative treatment options are being developed to increase the recyclability of waste PVC. This paper focuses on one such option which utilises ionic liquids (ILs) for material separation and dehydrochlorination of PVC contained in composite materials. Taking blisterpacks used as a packaging for medicines as an example of a composite material, the paper presents for the first time the life cycle environmental impacts of this novel PVC recycling method, in comparison with thermal treatment (low-temperature pyrolytic degradation of PVC). Three ILs were considered for the PVC recycling process: trihexyl(tetradecyl)phosphonium chloride, bromide and hexanoate. The results suggested that the impacts of the process using the first two ILs were comparable, while the system with hexanoate-based IL had 7-229 % higher impacts. Compared to the thermal treatment of waste blisterpacks, the IL assisted process had significantly higher impacts (22-819 %) in all 18 categories considered due to the greater heat requirements and the IL losses. Reducing the latter would lower most impacts by 8-41 %, while optimising the energy requirements would reduce the impacts by 10-58 %. Moreover, recovering HCl would increase significantly the environmental sustainability of the process, resulting in net-negative impacts (savings) in most categories. Overall, these improvements would lead to lower or comparable impacts to those of the thermal treatment. The findings of this study will be of interest to the polymer, recycling and related industries, as well as to process developers.

2.
Faraday Discuss ; 192: 283-301, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27498650

RESUMEN

Ionic liquids (ILs) have been proposed as suitable sorbents for CO2 capture because of their high CO2 absorption capacity, thermal stability, negligible vapour pressure and physico-chemical tunability. However, the environmental implications of ILs are currently largely unknown because of a lack of data. The issue is further complicated by their complex chemical structures and numerous precursors for which environmental data are scarce or non-existent. In an attempt to address this issue, this paper presents a new methodology for estimating life cycle environmental impacts of novel ILs, with the aim of aiding synthesis and selection of more sustainable CO2 sorbents. The methodology consists of four main steps: (1) selection of an appropriate IL and synthesis route; (2) construction of a life cycle tree; (3) life cycle assessment; and (4) recommendations for improvements. The application of the methodology is illustrated using trihexyltetradecylphosphonium 1,2,4-triazolide ([P66614][124Triz]), a promising IL for CO2 capture currently under development. Following the above steps, the paper demonstrates how the data obtained from laboratory synthesis of the IL can be scaled up to industrial production to estimate life cycle impacts and identify environmental hotspots. In this particular case, the main hotspots are the precursors used in the synthesis of the IL. Comparison of impacts with monoethanolamine (MEA), currently the most widely-used CO2 sorbent, suggests that [P66614][124Triz] has much higher impacts than MEA, including global warming potential. However, human toxicity potential is significantly higher for MEA. Therefore, the proposed methodology can be used to optimise the design of ILs and to guide selection of more sustainable CO2 sorbents. Although the focus is on ILs, the methodology is generic and can be applied to other chemicals under development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...