Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(24): 8789-8796, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35678469

RESUMEN

The potential of magnetic nanoparticles for acting as efficient catalysts, imaging tracers or heating mediators relays on their superparamagnetic behaviour under alternating magnetic fields. In spite of the relevance of this magnetic phenomenon, the identification of specific fingerprints to unequivocally assign superparamagnetic behaviour to nanomaterials is still lacking. Herein, we report on novel experimental and theoretical evidences related to the superparamagnetism observed in magnetic iron oxide nanoparticle suspensions at room temperature. AC magnetization measurements in a broad field frequency range from mHz to kHz and field intensities up to 40 kA m-1 unambiguously demonstrate the transition from superparamagnetic to blocked states at room temperature. Our experimental observations are supported by a theoretical model based on the stochastic Landau-Liftshitz-Gilbert equation. An empirical expression is proposed to determine the effective magnetic anisotropy from the field frequency value beyond which AC magnetization shows hysteretic behaviour. Our results significantly improve the understanding and description of the superparamagnetism of iron oxide nanoparticles, paving the way towards a more efficient exploitation of their unique magnetic properties.

2.
Nat Mater ; 17(1): 28-35, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180774

RESUMEN

Most of the magnetic devices in advanced electronics rely on the exchange bias effect, a magnetic interaction that couples a ferromagnetic and an antiferromagnetic material, resulting in a unidirectional displacement of the ferromagnetic hysteresis loop by an amount called the 'exchange bias field'. Setting and optimizing exchange bias involves cooling through the Néel temperature of the antiferromagnetic material in the presence of a magnetic field. Here we demonstrate an alternative process for the generation of exchange bias. In IrMn/FeCo bilayers, a structural phase transition in the IrMn layer develops at room temperature, exchange biasing the FeCo layer as it propagates. Once the process is completed, the IrMn layer contains very large single-crystal grains, with a large density of structural defects within each grain, which are promoted by the FeCo layer. The magnetic characterization indicates that these structural defects in the antiferromagnetic layer are behind the resulting large value of the exchange bias field and its good thermal stability. This mechanism for establishing the exchange bias in such a system can contribute towards the clarification of fundamental aspects of this exchange interaction.

3.
Rev Sci Instrum ; 85(5): 053904, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880384

RESUMEN

A vectorial magneto-optic Kerr effect (v-MOKE) setup with simultaneous and quantitative determination of the two in-plane magnetization components is described. The setup provides both polarization rotations and reflectivity changes at the same time for a given sample orientation with respect to a variable external magnetic field, as well as allowing full angular studies. A classical description based on the Jones formalism is used to calculate the setup's properties. The use of different incoming light polarizations and/or MOKE geometries, as well as the errors due to misalignment and solutions are discussed. To illustrate the capabilities of the setup a detailed study of a model four-fold anisotropy system is presented. Among others, the setup allows to study the angular dependence of the hysteresis phenomena, remanences, critical fields, and magnetization reversal processes, as well as the accurate determination of the easy and hard magnetization directions, domain wall orientations, and magnetic anisotropies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...