Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39148818

RESUMEN

Aging is associated with structural brain changes, cognitive decline, and neurodegenerative diseases. Brain age, an imaging biomarker sensitive to deviations from healthy aging, offers insights into structural aging variations and is a potential prognostic biomarker in neurodegenerative conditions. This study introduces BrainAgeNeXt, a novel convolutional neural network inspired by the MedNeXt framework, designed to predict brain age from T1-weighted magnetic resonance imaging (MRI) scans. BrainAgeNeXt was trained and validated on 11,574 MRI scans from 33 private and publicly available datasets of healthy volunteers, aged 5 to 95 years, imaged with 3T and 7T MRI. Performance was compared against three state-of-the-art brain age prediction methods. BrainAgeNeXt achieved a mean absolute error (MAE) of 2.78 ± 3.64 years, lower than the compared methods (MAE = 3.55, 3.59, and 4.16 years, respectively). We tested all methods also across different levels of image quality, and BrainAgeNeXt performed well even with motion artifacts and less common 7T MRI data. In three longitudinal multiple sclerosis (MS) cohorts (273 individuals), brain age was, on average, 4.21 ± 6.51 years greater than chronological age. Longitudinal analysis indicated that brain age increased by 1.15 years per chronological year in individuals with MS (95% CI = [1.05, 1.26]). Moreover, in early MS, individuals with worsening disability had a higher annual increase in brain age compared to those with stable clinical assessments (1.24 vs. 0.75, p < 0.01). These findings suggest that brain age is a promising prognostic biomarker for MS progression and potentially a valuable endpoint for clinical trials.

2.
Neuroimage Clin ; 27: 102335, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32663798

RESUMEN

The presence of cortical lesions in multiple sclerosis patients has emerged as an important biomarker of the disease. They appear in the earliest stages of the illness and have been shown to correlate with the severity of clinical symptoms. However, cortical lesions are hardly visible in conventional magnetic resonance imaging (MRI) at 3T, and thus their automated detection has been so far little explored. In this study, we propose a fully-convolutional deep learning approach, based on the 3D U-Net, for the automated segmentation of cortical and white matter lesions at 3T. For this purpose, we consider a clinically plausible MRI setting consisting of two MRI contrasts only: one conventional T2-weighted sequence (FLAIR), and one specialized T1-weighted sequence (MP2RAGE). We include 90 patients from two different centers with a total of 728 and 3856 gray and white matter lesions, respectively. We show that two reference methods developed for white matter lesion segmentation are inadequate to detect small cortical lesions, whereas our proposed framework is able to achieve a detection rate of 76% for both cortical and white matter lesions with a false positive rate of 29% in comparison to manual segmentation. Further results suggest that our framework generalizes well for both types of lesion in subjects acquired in two hospitals with different scanners.


Asunto(s)
Aprendizaje Profundo , Esclerosis Múltiple , Sustancia Blanca , Medios de Contraste , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen
3.
IEEE Trans Med Imaging ; 39(4): 1104-1113, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31562073

RESUMEN

We present a novel method for higher order reconstruction of fetal diffusion MRI signal that enables detection of fiber crossings. We combine data-driven motion and intensity correction with super-resolution reconstruction and spherical harmonic parametrisation to reconstruct data scattered in both spatial and angular domains into consistent fetal dMRI signal suitable for further diffusion analysis. We show that intensity correction is essential for good performance of the method and identify anatomically plausible fiber crossings. The proposed methodology has potential to facilitate detailed investigation of developing brain connectivity and microstructure in-utero.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Feto/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Embarazo , Diagnóstico Prenatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA