Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(20): 204108, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486661

RESUMEN

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

2.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835819

RESUMEN

Following the recent synthesis of graphene-based antiferromagnetic ultrathin heterostructures made of Co and Fe, we analyse the effect of the spacer between both ferromagnetic materials. Using density functional calculations, we carried out an exhaustive study of the geometric, electronic and magnetic properties for intercalated single Co MLs on top of Ir(111) coupled to monolayered Fe through n graphene layers (n = 1, 2, 3) or monolayered h-BN. Different local atomic arrangements have been considered to model the Moiré patterns expected in these heterostructures. The magnetic exchange interactions between both ferromagnets ( J C o - F e ) are computed from explicit calculations of parallel and anti-parallel Fe/Co inter-layer alignments, and discussed in the context of recent experiments. Our analysis confirms that the robust antiferromagnetic superexchange-coupling between Fe and Co layers is mediated by the graphene spacer through the hybridization of C's p z orbitals with Fe and Co's 3d states. The hybridization is substantially suppressed for multilayered graphene spacers, for which the magnetic coupling between ferromagnets is critically reduced, suggesting the need for ultrathin (monolayer) spacers in the design of synthetic graphene-based antiferromagnets. In the case of h-BN, p z orbitals also mediate d(Fe/Co) coupling. However, there is a larger contribution of local ferromagnetic interactions. Magnetic anisotropy energies were also calculated using a fully relativistic description, and show out-of-plane easy axis for all the configurations, with remarkable net values in the range from 1 to 4 meV.

3.
Sci Rep ; 8(1): 3879, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497088

RESUMEN

The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials.

4.
J Phys Condens Matter ; 28(15): 156003, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26987845

RESUMEN

We present a systematic first-principles study of Fe | MgO bilayer systems emphasizing the influence of the iron layer thickness on the geometry, the electronic structure and the magnetic properties. Our calculations ensure the unconstrained structural relaxation at scalar relativistic level for various numbers of iron layers placed on the magnesium oxide substrate. Our results show that due to the formation of the interface the electronic structure of the interface iron atoms is significantly modified involving charge transfer within the iron subsystem. In addition, we find that the magnetic anisotropy energy increases from 1.9 mJ m(-2) for 3 Fe layers up to 3.0 mJ m(-2) for 11 Fe layers.

5.
J Chem Phys ; 133(15): 154701, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20969413

RESUMEN

The adsorption of phthalocyanines (Pc) to various surfaces has recently been reported to lead to a lowering of symmetry from C4 to C2 in scanning tunneling microscope (STM) images. Possible origins of the reduced symmetry involve the electronic structure or geometric deformation of the molecules. Here, the origin of the reduction is clarified from a comprehensive theoretical study of CoPc adsorbed on the Cu(111) surface along with the experimental STM data. Total energy calculations using different schemes for the exchange-correlation energy and STM simulations are compared against experimental data. We find that the symmetry reduction is only reproduced when van der Waals corrections are included into the formalism. It is caused by a deformation along the two perpendicular molecular axes, one of them coming closer to the surface by around 0.2 Å. An electronic structure analysis reveals (i) the relevance of the CoPc interaction with the Cu(111) surface state and (ii) that intramolecular features in dI/dV maps clearly discriminate a Co-derived state from the rest of the Pc states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...